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UNIVERSITY OF "WASHINGTON 

April 25, 1994 

Department of Electrical Engineering 
Mail Stop FT-10, Seattle, Washington 98195 

(206) 543 6990 

EE400 Project 

There are three options for the project for this course. The emulator project will earn a 
maximum of fifteen points. The report project can earn a maximum of ten. Innovative 
projects, the third option, are open ended. 

The project will have a total of ten points associated with it. Thus, high scores on 
an emulator project will count as extra credit. 

Material on fuzzy systems will be available from Shinhak Lee during his office hours 
(9 to 10:30 AM on Mondays and Wednesdays). He will have available 

• Proceedings of the First IEEE International Conference on Fuzzy Systems, (FUZZ­
IEEE), 1992 

• Proceedings of the Second IEEE International Conference on Fuzzy Systems, (FUZZ­
IEEE), 199333 

• Bezdek & Pal, a volume containing reprints in classic papers in the application of 
fuzzy reasoning to pattern recognition. 

• Marks, a collection of papers on successful applications of neural networks published 
in the last few years by IEEE. The volume is not yet in print, but copies of most 
of the papers in the book are available. 

There are three options 
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Emulator Project 

Students choosing this topic will emulate a fuzzy system for a topic of their choosing. 
Possible applications include fuzzy expert systems, fuzzy control and fuzzy pattern recog­
nition. Students will prepare a written report on their project. 

Written and Oral Report 

A paper or topic dealing with fuzzy systems will be chosen. The student will write a one 
page summary of the paper and give an oral presentation of contents of the paper to the 
class. The length of the presentation depends on the number of students chooing this 
topic. Fifteen minutes is a good guess. Questions concerning the presentations will be 
on the final examination. 

Open Ended 

Innovative projects not falling into the above categories are welcome. 

Proposal 

Proposals are to be handed in on May 16, 1994. Consideration will be made that week. 
For the written and oral summary of a paper, include the authors, title, publication, 
and date of the paper. The written summary is due at the time the oral presentation 
is given. Those doing emulations should describe their projects in about one page. The 
final report is due Monday, June 6, 1994. Those doing projects that are publishable will 
receive a 4.0 in the course. 

Robert J. Marks II 
Professor of Electrical Engineering 
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Fuzzy Sets* 

L. A. ZADEH 

Department of Electrical Engineering and Electronic.~ Research Laboratory, 
University of California, Berkeley, California 

A fuzzy set is a class of objects with a continuum of grades of 
membership.Such a set is characterized by a membership (charac­
teristic) functiOn which--assigns-tQ._ea.ch object a. grade of member­
ship ra.nginp; between zero and one. The notTonsof inclusion, unt6n, 
intersection, complement, relation, convexity, etc., are extended 
to such sets, and various properties of these notions in the context 
of fuzzy sets are established. In particular, a separation theorem for 
convex fuzzy sets is proved without requiring that the fuzzy sets be 
disjoint. 

I. INTRODUCTION 

l\Jore often than not, the classes of objects encountered in the real 
physical world do not have precisely defined criteria of membership. 
For example, the class of animals clearly includes dogs, horses, birds, 
etc. as its members, and clearly excludes such objects as rocks, fluids, 
plants, etc. However, such· objects as starfish, bacteria, etc. have an 
ambiguous status with respect to the class of animals. The same kind of 
ambiguity arises in the case of a number such as 10 in relation to the 
"class" of all real numbers which are much greater than 1. 

Clearly, the "class of all real numbers which are much greater than 
1," or "the class of beautiful women," or "the class of tall men," do not 
constitute classes or sets in the usual mathematical sense of these terms. 
Yet, the fact remains that such imprecisely defined "classes" play an 
important role in human thinking, particularly in the domains of pattern 
recognition, communication of information, and abstraction. 

The purpose of this note is to explore in a preliminary way some of the 
basic properties and implications of a concept which may be of use in 
dealing with "classes" of the type cited above. The concept in question 
is that of a fuzzy set/ that is, a "class" with a continuum of grades of 
membership. As will be seen in the sequel, the notion of a fuzzy set 
provides a convenient point of departure for the construction of a con­
ceptual framework which parallels in many respects the framework 
used in t.he case of ordinary sets, but is more general than the latter and, 
potentially, may prove to have a much wider scope of applicability, 
particularly in the fields of pattern classification and information proc­
essing. Essentially, such a framework provides a natural way of dealing 
with problems in which the source of imprecision is the absence of sharply 
defined criteria of class membership rather than the presence of random 
variables. 

We begin the discussion of fm:zy sets with several basic definitions. 

fl. DEFI!IiiTIONI-i 

Let X he a space of points (objects), with a generic element of X de­
noted by :r.. Thus, X = !xj. 

• This work was supported in part by the Joint Services Electronics Program 
(U.S. Army, U.S. Navy and U.S. Air Force) under Grant No. AF-AFOSR-139-64 
and by the National Science Foundation under Grant GP-2413. 

1 An' :•pplication uf this concept to the formulation of a class of problems in 
p:utem classification is described in RAND Memorandum RM-4307-PR, "Ab­
straction and Pattern Classification,'' by R. Bellman, R. Kalaba and L.A. Zadeh, 
Ortoher, 19H4. 

Reprinted with permission from Inform. Control, vol. 8, pp. 338-353, 1965. (Copyright © 1965 by Academic Press, Inc.) 
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FUZZY SETS 

A fuzzy set (class) A in X is C'haracterized by a membership (chamc­
terisl1'c) ftmction !.4 ( x) which associates wit.h each pointz in X a real 
nu1nher in the interval [0, 1],3 with the value of j .. (x) at x representing 
tho "grade of membership" of x in A. Thus, the nearer the value of 
f.,(.t~) to unity, the high<'r the grade of membership of x in A. When A 
is a set in the ordinat·y sense of the term, its membership function ean 
take on only two values 0 and 1, with / .. (x) = 1 or 0 according as x 
does or does not belong to A. Thus, in this C'ase f.t(x) reduces to the 
familiar chara<~teristic function of a set A. (When there is a need to 
diffet'<'ntiate between such sets and fuzzy sets, the sets with two-valued 
chat·a<·teristic functions will be referred to as ordinary sets or simply sets.) 

E:rample. Let X be the real line R1 and Jet A be a fuzzy set of numbers 
which are much greater than 1. Then, one can give a precise, albeit 
subjective, characterization of A by specifyingj .. (x) as a function on R1

• 

Representative values of such a function might be:f.t(O) = 0;/ .. (1) = 0; 
/ .. (5) = 0.01 j / .. (10) = 0.2; / .. (100) = 0.95; f..(500) = 1. 

It should be noted that, although the membership function of a fuzzy 
set has some resemblance to a probability function when X is a countable 
set ( m· a probability density function when X is a euntinuum), there are 
essential differences het.ween these concepts which will become clearer 
in the sequel once the rules of combination of membership functions and 
their basic properties have been established. In fact, the notion of a 
fuzzy set is completely nonstatistical in nature. 

We begin with several definitions involving fuzzy sets which are 
obvious extensions of the mrresponding definitions for ordinary sets. 

A fuzzy set is empty if and only if its membership function is identically 
zero on X. 

Two fuzzy sets A and' B arc equ.rzl, writ ten as A = B, if and only if 
f.~.(x) = /a(x) for all x in X. (In the sequel, instead of writingf.,(x) = 
fa(x) for all x in X, we shall wt·ite more simply j.~. =fa.) 

The complement of a fuzzy set A is denoted hy A' and is defined by 

f.,, = I - f., . ( 1) 

As in the ease of ordinary sets, the notion of C'ontainment plays a 
centt·al role in the case of fuzzy sets. This notion and the rclat.ed notions 
of union and intersection are defined as follows. 

Containment. A is contained in B (or, equivalently, A is a subset of B, 
or A is smaller than or equal to B) if and only if f., ~ /a . In symbols 

A c B = J., ~ Ia. (2) 

Cnion. The union of two fuzzy sets A and B with respective member­
ship functionsf.,(x) andfa(x) is a fuzzy set C, writ.ten as C =AU B, 
whose membership function is related to those of A. and B by 

f c ( x) = :\I ax [j.a( x) , f n (.~:)], X~ X 

or, 111 abbreviated form 

fc = f<~ V fa. (4) 

Note that U has the associative property, that is, A U (B U C) = 
(AU B) U C. 

Comment. A more intuitively appealing way of defining the union is 

2 More generally, the domain of definition of !.t!Z) may be restricted to a sub­
set uf X. 

3 In a mure general setting, the range of the membership function can be taken 
to be a suitable partially ordered set P. For our purposes, it is convenient and 
sufficient to restrict the range of I to the unit interval. If the values of f.t (x) are 
interpreted Ill! truth values, the latter case corresponds to a multivalued logic 
with a continuum of truth values in the interval [0, 1). 
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FIG. 1. Illustrat.ion of the union and intersection of fuzzy aets in R1 

the following: The union of A and B is the smallest fuzzy set containing 
both A and B. More precisely, if Dis any fuzzy set which contains both 
A and B, then it also contains the union of A and B. 

To show that this definition is equivalent to (3), we note, first, that C 
as defined by (3) contains both A and B, since 

Max (Jot, fa] ~/A 

and 

iVIax (Jot, fa] ~fa. 

Furthermore, if Dis any fuzzy set containing both A and B, then 

fn ~ f.t 

fa ~fa 

and hence 

/o ~ :\Iax [fA , !B) = !r: 
whir.h implies that C c D. Q.E.D. 

The notion of an intersection of fuzzy sets ran be defined in an analo­
gous manner. Specifically: 

Intersection. The intersection of two fuzzy sets A and B with respective 
membership functions J.~(x) and fa(x) is a fuzzy set C, written as C = 
A n B, whose membership function is related to those of A and B by 

fr(X) = :.\fin [f..(;r), fa( X)], X EX, (5) 

or, in abbreviated form 

!c = r~ 1\ fa. (6) 

As in the case of the union, it is easy to show that the intersection of 
A and B is the largest fuzzy set which is contained in both A and B. As 
in the case of ordinary sets, A· and B are disjoint if A n B is empty. 
Note that n, like U, has the associative property. 

The intersection and union of two fuzzy sets in R1 are illustrated in 
Fig. 1. The membership function of the union is comprised of curve seg­
ments 1 and 2; that of the 'intersection is comprised of segments 3 and 4 
(heavy lines). 

Comment. Note that the notion of "belonging," which plays a funda­
mental role in the case of ordinary sets, does not. have the same role in 
the case of fuzzy sets. Thus, it is not meaningful 'to speak of a point z 
"belonging" to a fuzzy set A. except. in the trivial sense of !A(z) being 
positive. Less trivially, one can introduce two levels a and /3 (O <a < 1, 
0 < /3 < 1, a > 13) and agree to say that (1) "x belongs to A" if 
/A(x) ~ a; (2) "x does not belong to A" if f.{(x) ~ /3; and (3) "z has 
an indeterminate status relative to A" if 13 < fA(z) <a. This leads to a 
three-valued logic (Kleene, 1952) with three truth values: T 
(JA(x) ~a), F U.t(Z) ~ 13), and U ({3 < f.t(X) <a). 
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FUZZY SETS 

III. SOME PROPERTIES OF U. n. A~D COMPLEMENTATION 

Wit.h the operations of union, inferser.tion, and complementation 
defined as in ( 3), ( 5), and ( 1), it is easy to extend many of the basic 
identities which hold for ordinary sets to fuzzy sets. As examples, we have 

(A U B)' .;, A' n B'} (7) 
(A n B)' = A' U B' De :\Cot·gan's la"·s (B) 

C n (A U B) = (C n A) U (C n B) Distributive laws. (9) 

C U (An B) = (C U A) n (CUB) (10) 

These and similar equalities ran readily be established by showing 
that the corresponding relations for the membership functions of A, R, 
and C o.re identities. For example, in tho rase of (7), we have 

1 - l\Iax [!_.,Is]= :\!in [1 - !.~, 1 -fa] (11) 

which can be easily verified to be an identity by testing it for the two 
possible cases:f_.(x) > fs(x) andfA(x) < fs(x). 

Rimilarly, in the case of (10), the corresponding relation in terms of 
/.. , .fs, and fr is: 

which can be verified to be an identity by considering the six cases: 

/..(x) > fs(x) > fc(x),j_.(x) > fc(x) > fs(x),fs(x) > !A(x) > fc(x) 
' 

Js(x) > fc(x) > /A(x).fr(x) > !A(x) > fs(x),fc(x) > fo(x) > fA(x). 

Essentially, fuzzy sets in X constitute a distributive lattice with a 0 
and 1 (Birkhoff, 1948). 

A.:-; INTERPRETATION FOR UNIONS AND INTERSECTIONS 

In the case of ordinary sets, a set C which is expressed in terms of a 
family of sets A 1 , • • • , A;, · · · , An through the connectives U and n, 
r·an be represented as a network of switrhes a! I ••• 'all' with A; n Aj 
and A; U A i corresponding, respectively, to series and parallel combina­
tions of a; and ai. In the case of fuzzy sets, one can give an analogous 
interpretation in terms of sieves. Specifically, let f;(x), i = 1, · · · , n, 
denote the value of the membership function of .4.; at x. Associate with 
f;(x) a sieve S;(x) whose meshes are of size f;(x). Then, f,(x) v fi(x) 
and j,(x) 11 fi(x) ronespond, respectively, to parallel and series com­
binations of S,(x) and Si(x), as shown in Fig. 2. 

:\fore generally, a well-formed expression involving A 1 , • • • , An, U, 
and n ('Orresponds to a network of sieves sl (X) I ••• ' Sn (X) which can 
be found by the conventional synthesis techniques for switching cir­
cuits. As a very simple example, 

(13) 

corresponds to the network shown in Fig. 3. 
Note that the mesh sizes of the sieves in the network depend on x and 
that the network as a whole is equivalent to a single sieve whose meshes 
are of size f c(x). 

!\'. ALUEllHAIC OPEHATIONH ON FUZZ" RETS 

In add it ion tot he opet·at ions of union and intersect;on, one <~an define 
a number of other ways of forming combinations of fuzzy sets and re­
lating them t.o otH' anothet·. Among the lllOt·e important of these are the 
followi11g. 

Algebraic product. Th(• a/gebra?'c product of A and B is denoted by .1 B 
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FIG. 2. Parallel and series connection of sieves simultating u and n 

Fw. 3. A netll'ork of sieves simultatiug llf,ix) v h(xJI 1\ f~(:r)l v f,(:r} 

and is dPtined in t Prms of the lll<'tllbt•t'Ship futll'1 ions of A and R hy 1 he 
rei at ion 

J.,H = .f.du. ( 1-J.) 

.-~u c _., n u. ( l.i) 

.-llgebraic Slllll.l Tlw olgPhraic suu1 of A and H is dPnoted hy A + H 
and i~; d('fined h~· 

.f.,.,.n =f., + /u ( 1 () I 

pro\'ided tlw tillllt J., + /11 is less than ot· <·qual to ttttit,v. Thus, unlikt• 
thr algehrair· prodtwt, t l~t• algelll'ait· sunt is nwauingful on!~· \\'hen tlw 
condition.f.,(.rJ +fH(.r) ~ 1 issatisfi(•d forall.r. 

Absolute tli:tference. The ab.wJ/11/t• d({Tt•rf'ntP of A and H is denott'd by 
I A - H I and is dt•fined hy 

f:..t-H! = f /.~ - J'u ;. 
Xot(' that in the t·ase of ordinat·y S('ts 1.4 - B lredw·es to the relatin• 
eomplement of A n B in A U fl. 

Convex combination. By a convex combination of two vectors f and g 
is usually meant a linear combination of f and g of ~the form 
V + ( 1 - >-..)g, in which 0 ~ A. ~ 1. This mode of combining f and g 
can b0 generalized to fuzzy sets in the following manner. 

Let A, B, and A be arbitrary fuzzy sets. -The convex combination of 
A, B, and A is denoted by (A, B; A) and is defined by the relation 

(A, B; A) = AA + A'B (17) 

where A' is the complement of A. Written out in terms of membership 
functions, ( 17) reads 

X E X. (18) 

A basic property of the convex eombination of A, B, and A is expressed 
by 

A nBc (A, B; A) t: AU B for all A. (19) 

'The dun) of the algebraic product is the .•11111 .I EB JJ = (A 'JJ')' = :1 + 1J- A JJ. 
(This \\'US poiuted out by T. Cover.) !:\ott• that for ordiuar~· sets nand the algt'· 
hrnif' product are equivuleut operatious, us ure U nnd EB. 
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This property is an immediate consequence of the inequalit.ies 

.:\[in [f .. (x), fs(:c)J ~ XJ .. (x) + (1 - A.)fs(x) 

~ :.\Iax [f .. (x), fs(x)], X E X (20) 

\Vhich hold for all >.. in [0, 1]. It. is of interest to observe that, given any 
fuzzy set C satisfying A n B c C c A U B, one can always find a fuzzy 
set A such that C = (A, B; A). The membership function of this set is 
given by 

r ( ) = fc(x) - fs(x) 
• A X f.t(X) - .fli(X) 1 X EX. (21) 

Fuzzy relation. The concept of a relation (which is a generalization of 
that of a function) has a natural extension to fuzzy sets and plays an 
important role in the theory of such sets and their applications-just 
as it does in the <'ase of ordinary sets. In the sequel, we shall merely de­
tine the notion of a fuzzy relation and touch upon a few related concepts. 

Ordinarily, a relation is defined as a set of ordered pairs ( Halmos, 
1960); e.g., the set of all ordered pairs of real numbers x andy such that 
x ~ y. In the context of fuzzy sets, a fuzzy relation in X is a fuzzy set in 
the product space X X X. For example, the relation denoted by x » y, 
x, y E R\ may be regarded as a fuzzy set A in R2

, with the membership 
function of A,f.t(x, y), having the following (subjective) representative 
values:f .. (lO, 5) = O;f.t(lOO, 10) = 0.7;f .. (100, 1) = 1; etc. 

lHore generally, onE- <·an define an n-ary fuzzy 1·elation in X as a fuzzy 
set A in the product spac·e X X X X · · · X X. For such relations, the 
membership fum~tion is of the form f .. (x!, · · · , Xn), where X; E X, 
i = 1, · · · , n. 

In the t'ase of binary fuzzy t·elat.ions, the composition of two fuzzy re­
lations A and R is denoted by B o A and is defined as a fuzzy relation iu X 
whose membership furwtion is t·elated to those of A and B by 

~ot (' f hat t lw oppration of c·omposit ion has t lw assoriative property 

A o (RoC) = (A o B) o C. 

Puzz!J se./.~ i-rulu.ced by 111appings. L<•t '1' be a tnapping from X to a 
spac·e l'. LPt B hP a fuzzy set in l' with nwmbership func•tion j'8 ( !J ). 
ThP iuwt'!'e ntappiug '/'- 1 indw•(•s a fuzzy !:l'f :1 in X whose! lll!'lllbel'ship 
full!•tiou il' dc•firu•d l.y 

!I r: r 

fol' all .r· in X whic·h at·<' tnappc'<l by '1' i11to !f. 

( ~onsidf't' no\\· a 1•on\'C'l'~'~l' probk•n1 in \\'hic·h A is 11 giw11 fuzzy sc~t in X, 
and 7', as twfcm~, is a lllllpping ft'Olll X to l'. Tlw qtwstion is: What is 
t IH' nH•tlllwt-ship ftlll!'t ion fo1· t hP fuzz~· !'<'t H in ) ·· wltic·h i~o~ indlll'!•d h~· 

this tllappin~? / 
If 'l' is not OIH'-IIIH', t hPn an atnbiguity ut·is<'s \\'lwn 1 \\'o m· lllore di~­

titwt points in X, !!flY .l't and ,)'2 I \\'ith uiffl'l'C'nt grad(':-; of lll('Jllhc•J-ship 
in A, at'<' mapped into tltc• ~o~alll<' pointy in}'. In this c·as<•, tlw quPstion 
is: \\'hut grade• of llH'lntll't'ship in B l-lhould h nssigm•d toy? 

To rl'solve this arnhiguity, \\'<' f.LI£1'1'1' to a~si~n th<' laJw•t· of tht• t\\'o 
g;l'ad(•JS of lll<'tllbPt'ship 1 o 1/· ~ fot'!' J!<'lll'r·nll~·, tlw lll<'Jilht•t·l-lhip f111wt iou 
fOl' H \\'ill be• dl'filll'<l by 

JJ : )' 

wlwt·c~ 7'-1(!J) is th<• st•t of points in.\" \\'hit·h at'<' lllapp<'d into 11 by'/'. 
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Fw. 4. Convex and nonconvex fuzzy sets in E 1 

\'. CO~ \'EX IT\' 

As will be scf'll ill the ~eqtwl, the not io11 of <'011\'exity ea11 readily lw 
exte11dt>d to fuzzy sets in su<·h a way a;; to pt'<•st>rve many of the prop­
e~·tiN; whirh it has iu tlw (•ontext of ortliuat·y sets. This notion appeal'S 
to lw pat·tif•ularly useful in applirat ions ill\·ol\·in~ pat tt>t'n c•lassification. 
optimization and rPlatPd prohlPms. 

In what follows, we assume for conrt·eteness that X is a real Euclidean 
space En. 

DEFINITIONS 

Convex£ty. A fuzzy set A is convex if and only if the sets r a defined by 

r., = lx lf..(x) ~a) (24) 

are eonvex for all a in the interval (0, I]. 
An alternative and more direct definition· of convexity is the follow­

ing5: A is con11e.r if and only if 

j .. [AX1 + (1- A)x2) ~:\fin (f,.(Xt),f .. (x2)) (25) 

for all x1 and x2 in X and all A in [0, I]. Note that this definition does not 
imply that f,,(x) must he a (•onvex func·tion of x. This is illustrated in 
Fig. 4 for n = 1. 

To show the equivalence bet ween the above definitions note that if A 
is convex in the sense of the first definition and a = f .. (x1) ~ f,.(x2), 
then X2 E r a and AXt + (1 - A )x2 E r a by the convexity of r a • Hence 

f.,[AXt + (1 - A)x2] ~ a = f .. (xt) = ;\:fin [f .• (xt),J..(x2)]. 

Conversely, if A is eonvex in the sense of t.he second definition and 
a = f., ( Xt) 1 then r a may be regarded as the set of all points X2 for which 
f.1 (x2) ~ f,.(x1). In virtue of (2.1), every point of the form. 
AX! + (I - A)X2' 0 ~ A ~ I, is also in r a and hence r a is a convex 
set. Q.E.D. 

A basic property of convex fuzzy sets is expressed by the 
THEOREM. If A and Bare convex, so is thei?· intersection. 
Proof: Let C = A n B. Then 

fc[AX! + (I :.... f.)x2J 

=Min (f .. ['-xt + (1- f.)x2],Js[Ax! +(I- f.)Z2]]. (26) 

Now, since A and Bare convex 

and hence 

s This way of expressing convexity was suggested to the writer by his colleague, 
E. Berlekamp. 
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(29) 
$;; ::\1in [:\·Iin [f.4(x1), f 8(x1)], :\fin [f .• (x2), fn(x2)]] 

fdXx1 + (1 - X)x2J $;; :\fin Ur . .(xr), fc(X2)]. Q. E. D. (30) 

Roundedness. A fuzzy set A is bounded if and only if the sets r.. = 
lx I f,.(x) $;; al are bounded for all a> 0; that is, for every a> 0 there 
exists a finite R(a) sur~h that II x II ;;;; R( a) for all x in r a • 

If A is a bounded set, then for each E > 0 then exists a hyperplane H 
such that f,. (x) ~ E for all x on the side of H which does not <:ontain 
the origin. For, consider the set r, = I x I !.1 ( x) $;; El. By hypothf'sis, 
this set is contained in a sphereS of radius R(E). Let H be any hyper­
plane supporting S. Then, all points on the side of H which does not 
contain the origin li~ outside or on S, and herll'e for all such points 
J..(x) ~ E. 

LEMMA. Let A be a bounded fuzzy set and let ill = Sup .. j,.(x). 
(M will be referred to as the maximal grade in A.) Then therP- i8 at least 
one point x0 at which M is essentially attained in the sense that, fQT' each 
E > 0, every spherical neighborhood of x0 contains points in the set Q( E) = 
lx Jf,.(x) $;;M-El. 

Proof.6 Consider a nested sequence of bounded set.s r1, r2, · · · , 
where rn = fx I f,.(x) $;; M - M/(n + 1)1, n = 1, 2, .... Note that 
r" is nonempty for all finite n as a consequence of the definition of M 
as M = Sup .. f,.(x). (We assume that M > 0.) 

Let Xn be an arbitrarily chosen point in r n , n = 1, 2, .... Then, 
x1 , x2 , • • • , is a sequence of points in a closed bounded set r1 . By the 
Bolzano-Weierstrass theorem, this sequence must. have at least one 
limit point, say x0 , in f 1 • Consequently, every spherical neighborhood 
of x0 will contain infinitely many points from the sequence x1 , X2, • · • , 

and, more particularly, from the subsequence XN+I, xN+2, • • • , where 
N ~ M /E. Since the points of t.his subsequence fall within the set Q( E) = 
fx I f,.(x) $;; 111 - El, the lemma is proved. 

Strict and strong convexity. A fuzzy set A. is strictly convex if the sets 
I' a , 0 < a ~ 1 are strictly <"On VeX I i hat is, if the midpoint of any two 
distinct points in I' a lies in the interior of r a). Note that. this definition 
reduces to that of strict convexity for ordinary sets when A is such a set. 

A fuzzy set A is stl'ongly convex if, for any two dist.inel points x1 and x2 , 

and any >. in the open interval (0, 1) 

f.J[>.xl + (1 - >.)x2J > :\fin [f, (x.I),J.-~(x2)]. 

:\ole that strong couvexit.y does not imply strict. convexity or vice-versa. 
Kote also that if A and Bare hounded, so is their union and intersection. 
Similarly, if A and B are strictly (strongly) ('On vex, !.heir intersection 
is stric:t ly (strongly) <'Oil vex. 

Let A be a <·ouvex fuzzy set and let M = Sup .. ,J..(x). If A is bounded, 
then, as shown above, either M is attaiued for some x, say Xo, or there 
is at least one point .r0 at which lll is essentially attained in the sense 
that, for each E > 0, every spherical neighborhood of x0 contains points 
in the set Q(E) = lx I M - J..(x) ~ Ej. In particular, if A is strongly 
corrvex and :r0 is attaiued, then Xo is unique. For, if M = f,.(x0 ) and 
M = f.-t(XJ), with X! ;:tf: Xo' then J..(x) > M for X = o .. 1Xo + O.iixr' 
which contradicts J/ = :\'lax,.fA(x). 

:\'fore generally, let C(A) be the set of all points in X at which M is 
essentially attained. This set will be referred to as the core of A. In the 
<'ase of <'on vex fuzzy sets, we can assert the following property of C(A). 

t This proof was suggested by A. J. ThomMian. 

42 

~-------



ZADEH 

TmmREM. If A is a convex fuzzy set, then its core is a convex set. 
Proof: It will suffice to show that if M is essentially attained at Xo 

and x1 , x1 ~ x0 , then it is also essentially attained at all x of the form 
X = Axo + (1 - X.).c1, 0 ~ A ~ 1. 

To the end, let P be a cylinder of radius E with the line passing through 
x0 and x1 as its axis. Let x0' be a point in a sphere of radius E centering 
on x0 and x/ be a point, in a sphere of radius E centering on x1 such that. 
f,._ ( x0') 5;:; !If - E and f ,._ ( ~/) 5;:; M - E. Then, by the convexity of A, 
for any point u on the segment x0'x/, we havef,._(u) 5;:; M- E. Further­
more, by the convexity of P, all points on x0'x/ will lie in P. 

Now let x be any point in the segment XoX1 • The distance of this point 
from the segment x0'x/ must be less than or equal to E, since x0'x/ lies 
in P. Consequently, a sphere of radius E centering on x will contain at 
least. one point of the segment x0'x/ and hence will contain at least one 
point, say w, at whieh f., ( w) 5;:; M - E. This establishes that M is es­
scnt.ially att.ained at x and thus proves t.he theorem. 

ConoLLARY. If X = E1 and A is strongly convex, then the point at 
which M i.s essentially atta1:ned is unique. 

Shadow of a fuzzy set. ~t. A be a fuzzy set in En with membership 
funct.ionf~(x) = f.,(x 1 , • • ·, Xn). F'or notational simplicity, the notion 
of the .9hadow ( proje<·t ion) of A on a hyperplane H will he defined below 
for the spc<~ial <~asc where H is a <·oordinatC' hyperplane, e.g., H = 
i.r.J XI= Ol. 

Specifiealiy, the shad1rw of A on If = i .r. J .c1 = 01 is defined to he a 
fuzzy set. SH(A) in H"-1 wit.h f,, 11 r., 1(.r.) given by 

f-'HIA,(:c) = fs,(A>(.r2, · · · , .r.,.) = Sup,, .f.,(xl, · · ·, Xn). 

:'\ote t.hat this definition is eonsistcnt with (2:1). 
When A is a <·onvex fuzzy set, t lw following propet·t y of ~H( A) is an 

immediate eonsequen<·c of the ahov<~ definition: If A is a <:onvex fuzzy 
set, t.hen its shado\1' 011 any hyperplane is also a <·onvex fuzzy set. 

An int('rest.ing property of the shado\\'s of two <·onvrx fuzzy sets is 
expressed by t hr follo\\'illl-!; impli<·at.ion 

To prow this assm·tion,7 it is snffi<·i<~nt to show that if there exists a 
point, say :r11 , Sll<'h that.f.,(x0 ) re fs(x0), tlwn thPit· exists a hypet·plarH• 
H sud1 t.hat .f,,111 .. >(xo*) ~ .f.'n<Hl(.ru*), \\·lwrP .r,* iR tlw proj!wtion of 
.Co 011 H. 

Suppose that.f_.(x11 ) = a > f 11 (:c11 ) = {3. Sin<•n R is a <'onvcx fuzzy set, 
the snt I'~ = lx lfn(x) > /31 is <!onvex, and lwnre thcrn exists a hyper­
plane P supporting r~ and passing through .r.11 • Let H be a hyperplane 
orthogonal to F, and let. Xo * be the projeetion of x0 on H. Then, since 
fs(x) ~ /3 for all x ou F, we have fs11 ut>(x0*) ~ {3. On the other hand, 
fs 11 (Al(xo*) 5;:; a. Consequently, fs 11 u!l(xo*) ~ fsH<Al(x0*), and similarly 
for the case where a < {3. 

A somewhat more general form of the above assertion is the following: 
Let A, but not necessarily B, be a convex fuzzy set, and let S11 (A) = 
S"(B) for all H. Then A = conv B, where conv B is the convex hull of 
B, that is, the smallest convex set containing B. More generally,S11(A) = 
SH(B) for all H implies conv A = conv B. 

Separatilm of convex fuzzy sets. The classical ieparat.ion theorem for 
ordinary convex sets states, in essence, that. if A and Bare disjoint con­
vex sets, then there exists· a separating hyperplane H such that A is 
on one side of H and B is on the other side. . 

It is natural to inquire if this theorem can be extended to convex fuzzy 
1 Thi11 proof is lmHed 1111 un iden Rll~gP.!ILed by C:. DnntziK for t.he CIU:IP. wht'lrc 

.t aut! II tilt' ortlinar.v t'IIIIV!lX Ht'!R. 
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sets, without requiring that A a.nd B be disjoint, since the condition of 
disjointness is much too restrictive in the case of fuzzy sets. It turns 
out, as will be seen in the sequel, that the answer to this question is in 
1 he affirmative. 

As a. preliminary, we shall have to make a few definitions. Specifically, 
let A and B be two bounded fuzzy sets and let H be a hypersurface in 
E" defined by an equation h(x) = 0, with all points for which h(x) ~ 0 
being on one side of 'Hand all points for which h(x) ~ 0 being on the 
ot.her side.' Let KH be a number dependent on H such thatj.~(x) ~ KH 
on one side of H a.ndfs(x) ~ KH on the other side. Let MH be Inf KH. 
The number D11 = 1 - M H will be called t.ht=: degree of separation of A 
and B by H. 

In general, one is concerned not with a given hypersurface H, but 
with a family of hypersurfaces IH~l, with X ranging over, say, Em. The 
p1·oblem, then, is to find a member of this family which realizes the 
highest possible degree of separation. 

A special case of this problem is one where the H~. are hyperplanes in 
E", with X ranging over E". In this case, we define the degree of sepa1'a­
bility of A and B by the relation 

D =1-M (31) 

where 
(32) 

with the subscript X omitted for simplicity. 
Among the various assertions t.hat can be made ronceming D, the 

following statement9 is, i11 effect, an extension of the separation theorem 
to convex fuzzy sets. 

THEOREM. Let A and H be bounded convex fuzzy sets in E", with maximal 
grades M .. and Me, respeclively [ill.,= Supz/..(x), Me= Sup.fa(x)]. 
Let M be the maximal grade for the intel'section A n B ( M = Sup. 1\Iin · 
(jA(x),fs(x)]). Then D = 1 - M. 

Comment. In plain words, the theorem states that the highest degree 
of separation of two eonvex fuzzy sets A and B that c:a11 be achieved 
with a hyperplane in· E" is one minus the maximal grade in the inter­
section A n B. This is illustrated in Fig. 1'> for n = 1. 

Proof: It is convenient to c~onsider separately the following two cases: 
(1) M = Min (M A, M s) a11d (2) M < :\fin (M.t, J! a). Note that the 
lat.ter case rules out A c B orB c A. 

Case 1. For concrete11ess, assume that AI .• < M H, so that M = M .. . 
Then, by the property of bounded sets already stated there exists a 
hyperplane H such that fn(x) ~ llf for all x 011 oue side of H. On the 
other side of H, f.• ( x) ~ M because f., ( x) ~ .11.1 = M for all x. 

It remains to be shown t.ha.t there do not exist a.n M' < M and a 
hyperplane H' such t hatf.t ( x) ~ At' on one side of II' and f s( x) ~ M' 
on the ot.her side. 

This follows at ouee from the following observatio11. Suppose that 
suC"h H' and M' exist, and assume for conereteness that. the core of A 
(that is, the set of points at whieh llf .• = M is essentially attained) is 
on the plus side of H'. This rules out the possibility that JA(x) ~ M' 
for all x on the plus side of H', and hence necessitates that f .. ( x) ~ M' 
for all x on the minus si.de of H', and fs(x) ~ M' for all x on the plus 
side of H'. Consequently, over all x on the plus side of H' 

Supz Min [JA(x), fs(x)] ~ M' 

and likewise for all x on the minus side of H'. This implies that, over all 

s Note that the seta in question have H in common. 
'This Htatement is ha~N.I on a suggeHtion of E. Berlekarnp. 
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lC 

Fta. 5. Illustrat.inn of t.he .separation theorem for fuzzy sets in EJ 

x in X, Sup., Min [/A(x), fs(x)] ~ M', which contradicts the assumption 
that Sup., Min [JA(x), fs(x)] = M > M'. 

Case 2. Consider the convex sets r ... = [x 1/ ... (x) > Mj and rs = 
lx l!s(x) > Mj. These sets are nonempty and disjoint, for if they were 
not there would he a point, say u, such that/ ... (u) > M andfs(u) > M, 
and hence/ ... ns(u) > M, which.contradicts the assumption that M = 
Sup.,/ ... ns(x). 

Since r A and rs are disjoint, by the separation theorem for ordinary 
convex sets there exists a hyperplane H such that r .... is on one side of H 
(say, the plus side) and rs is on the other side (the minus side). Fur­
thermore, by the definitiOnS Of r A and rs, for aJl points On the minUS 
side of H,JA(x) ~ M, and for all points on the plus side of H,Js(x) ~ M. 

Thus, we have shown that there exists a hyperplane H which realizes 
1 - M as the degree of separation of A and B. The conclusion that a 
higher degree of separation of A and B cannot be realized follows from 
the argument given in Case 1. This concludes the proof of the theorem. 

The separation theorem for convex fuzzy sets appears to be of particu­
lar relevance to the problem of pattern discrimination. Its application 
to this class of problems as well as to problems of optimization will be 
explored in subsequent notes on fuzzy sets and their properties. 
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TABLE 2.2. SOME CLASSES OF FUZZY SET UNIONS AND INTERSECTIONS. 

Reference Fuzzy Unions Fuzzy Intersections 
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Sklar (1961) 

Hamacher a + b - (2 - -y)ab ab 
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Frank [I 979) I 
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s -
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R~[x] 
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R ~[a] ::. 1/a .,.. o.7/c. 1-

R!! LbJ = l /b + 
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1/d+ o.7/e 
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3.8 l='"vz-:ey Re-LATION EquATIONS 

C e n s ; d e. r Com f o s i t ·, o .r) 

R=- PoQ_ 

or 

r., ::max min (p. ·II) a·,\ I~ J A_~J ../ /Q I() 

\______ Fu z. ?:.J I<ELA Tl oAJ t quA Tl 0111 s 
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Figure 1.12 Multiplication of two fuzzy numbers (Example 1. 9 ). 

and 

a= -a/a) /2 + 5/2. 

Hence 

Aa =[a+ 2, -2a + 5). 

Using (1.44) we also have 

a= b
1
(a);2- 3/2 and a= -b/a) + 6. Hence 

Ba = [2a + 3,- a+ 6]. 

Thus we obtain the multiplication 

Aa (·) Ba =[a+ 2) (2a + 3), (-2a + 5) (-a+ 6)] 

= [2a2 + 7a + 6, 2d- 17a + 30]. 

We now have two equations to solve, namely, 

2a2 + 7 a + 6 - x = 0 

and 

2a2 -17a+30-x=O. 

We will retain only two roots in [0, 1]. For (1.46) 

a=(-7+~)/4, 

andfor(1.47) 

Finally, 

'it X E R+: 

(1.46) 

(1.47) 

The resulti 
A(·) B doe: 

EXAMPLE 

InN let us 

Using (1.41) 
thus find th1 

A(·)B= 

8 9 10 

~ 
1

2T: 
Wenowexan 
we showed b 
number in R. 
of the normal 
of the normal 

-A-1. At the left 
in (1.42), v * 2. At the rigb 
To simplif; 
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0 0 
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II 0.3) V 

II 8) V 

II 1) V 
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f-LA(-)B(1)=(0.3 A O) V (0.7 A 0.1) V (0.9 A 0.6) V (1 A 1) V 
(0.5 A 0.8) = 1, 

f-LA(-)B(2)=(0.7 A O) V (0.9 A 0.1) V (1 A 0.6) V (0.5 A 0.8)=0.6, 

f-LA(-)B(3)=(0.9 A O) V (1 A 0.1) V (0.5 A 0.6)=0.5, 

f-LA(-)B(4)=(1 A 0) V (0.5 A 0.1)=0.1, 

f-LA(-)B(5)=(0.5 A 0)=0. 

1.5 MULTIPLICATION OF FUZZY NUMBERS 
At this point we consider multiplication5 in R+ and N. Let us consider 
two fuzzy numbers A and B in R +. From the level a of presumption, 
we can write 

Aa (·) Ba = [a,(o), a/a)] (·)'[b/a), b/a)] 

= [a,(a) · b,(a), a}a) · b}a)]. (1.41) 

Multiplication can also be given by 
I 

(1.42) 

Equations (1.41) and(1.42) are equivalent, and this may be proven 
in the same way as was given for addition in the previous section. 

EXAMPLE 1.9 

For this example we again use triangular fuzzy numbers because they 
are so easy to work with. 

v X E R+: 

f-LA(x) =0, X::::; 2, 
=x-2, 2 ::::;x::::; 3, 
=-x/2+5/2, 3 ::s;x::::; 5, 
=0, X 2:5. (1.43) 

f-LB(x) = 0, X :S 3, 
=x/2 -3/2, 3 ::::;x.::::; 5, 
=-x+6, 5 ::::;x::::; 6, 
=0, X 2:6. (1.44) 

··.for the level a in Figure 1.12 and using ( 1.43) we have 

a= a
1
(a)- 2, (1.45) 
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V a E [0, 1]. {1.50) 

Division is not, however, associative or commutative. In connection 
with this let us study an example in R +. 

EXAMPLE 1.11 

We now consider a numerical example. Let us use the triangular 
shape shown in Figure 1.13, and let 

v X E R+: 

f-LA(x) = 0, 
= x/4- 18/4, 
= -x/11 + 3,. 
=0, 

f-LB(x) = 0, 
=x -5, 
= -x/2 + 4, 
=0, 

X :S 18, 
18 :S X :S 22, 
22 :S X :S 33, 

X 2:: 33. 
X :S 5, 

5 :S X :S 6, 
6 :S X :S 8, 

X 2:: 8. 

{1.51} 

(1.52} 

In (1.51), let a= a 1(a);4- 18/4 
which 

and a= -a/a)/11 + 3, from 

Aa = [4a + 18, - 11a + 33]. 

In (1.52), let a= b
1
(a)- 5 and a= -b2(a);2 + 4, from which 

Ba =[a+ 5, -2a + 8]. 

Thus 

Aa (:) Ba = [4a + 18, -11a + 33] (:)[a+ 5, -2a + 8] 

~ ( 4a + 18, 
-2a + 8 

-11a + 33) 
a+5 

fl.. 
1.0 --·-r-· 

11
\ 

II I A(:JB,:I 
I I I 
I I \ 

0.5 I : I 
I I I 
I I 

I 
I 
I 
I 

0.0 
0.0 5.0 /0.0 15.0 20.0 25.0 30.0 X 

Figure 1.13 Division of two fuzzy numbers (Example 1.11). 
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Fuzzy Logic in Control Systems: Fuzzy 
Logic Controller-Part I 

CHUEN CHIEN LEE, STUDENT MEMBER, IEEE 

Abstract -During the past several years, fuzzy control has emerged as 
one of the most active and fruitful areas for research in the applications 
of fuzzy set theory, especially in the realm of industrial processes, which 
do not lend themselves to control by conventional methods because of a 
lack of quantitative data regarding the input-output relations. Fuzzy 
control is based on fuzzy logic-a logical system which is much closer in 
spirit to human thinking and natural language than traditional logical 
systems. The fuzzy logic controller (FLC) based on fuzzy logic provides a 
means of converting a linguistic control strategy based on expert knowl­
edge into an automatic control strategy. A survey of the FLC is pre­
sented; a general methodology for constructing an FLC and assessing its 
performance is described; and problems that need further research are 
pointed out. In particular, the exposition includes a discussion of 
fuzziflcation and defuzzilication strategies, the derivation of the database 
and fuzzy control rules, the definition of fuzzy implication, and an 
analysis of fuzzy reasoning mechanisms. 

l. INTRODUCTION 

D URING the past several years, fuzzy control has 
emerged as one of the most active and fruitful areas 

for research in the application of fuzzy set theory [141]. 
The pioneering research of Mamdani and his colleagues 
on fuzzy control [63]-[66], [50] was motivated by Zadeh's 
seminal papers on the linguistic approach and system 
analysis based on the theory of fuzzy sets [142], [143], 
[145], [146]. Recent applications of fuzzy control in water 
quality control [127], [35], automatic train operation sys­
tems [135], [136], [139], automatic container crane opera­
tion systems [137]-[139], elevator control [23], nuclear 
reactor control [4], [51], automobile transmission control 
[40], fuzzy logic controller hardware systems [130], [131], 
fuzzy memory devices [107], [108], [120], [128], [129], [133], 
and fuzzy computers [132] have pointed a way for an 
effective utilization of fuzzy control in the context of 
complex ill-defined processes that can be controlled by a 
skilled human operator without the knowledge of their 
underlying dynamics. 

The literature in fuzzy control has been growing rapidly 
in recent years, making it difficult to present a compre­
hensive· survey of the wide variety of applications that 
have been made. Historically, the important milestones in 

Manuscript received May 27, 1988; revised July I, 1989. This work was 
supported in part by NASA grant NCC-2-275 and AFOSR Grant 
89-0084. 

The author is with the Electronics Research Laboratory, Department 
of Electrical Engineering and Computer Sciences, University_ of Califor­
nia, Berkeley, CA 94720. 

IEEE Log Number 8932013. 

the development of fuzzy control may be summarized as 
shown in table I. It should be stressed, however, the 
choice of the milestones is a subjective matter. 

Fuzzy logic, which is the logic on which fuzzy control is 
based, is much closer in spirit to human thinking and 
natural language than the traditional logical systems. Ba­
sically, it provides an effective means of capturing the 
approximate, inexact nature of the real world. Viewed in 
this perspective, the essential part of the fuzzy logic 
controller (FLC) is a set of linguistic control rules related 
by the dual concepts of fuzzy implication and the compo­
sitional rule of inference. In essence, then, the FLC 
provides an algorithm which can convert the linguistic 
control strategy based on expert knowledge into an auto­
matic control strategy. Experience shows that the FLC 
yields results superior to those obtained by conventional 
control algorithms. In particular, the methodology of the 
FLC appears very useful when the processes are too 
complex for analysis by conventional quantitative tech­
niques or when the available sources of information are 
interpreted qualitatively, inexactly, or uncertainly. Thus 
fuzzy logic control may be viewed as a step toward a 
rapprochement between conventional precise mathemati­
cal control and human-like decision making, as indicated 
by Gupta [30]. 

However, at present there is no systematic procedure 
for the design of an FLC. In this paper we present a 
survey of the FLC methodology and point to the problems 
which need further research. Our investigation includes 
fuzzification and defuzzification strategies, the derivation 
of the database and fuzzy control rules, the definition of a 
fuzzy implication, and an analysis of fuzzy reasoning 
mechanisms. 

This paper is. divided into two parts. The analysis of 
structural parameters of the FLC is addressed in Part I. 
In addition, Part I contains five more sections. A brief 
summary of some of the relevant concepts in fuzzy set 
theory and fuzzy logic is presented in Section II. The 
main idea of the FLC is described in Section III, while 
Section IV describes the fuzzification strategies. In Sec­
tion V, we discuss the construction of the data base of an 
FLC. The rule base in Section VI explains the derivation 
of fuzzy control rules and rule-modification techniques. 

Part II consists of four sections. Section I is devoted to 
the basic aspects of the FLC decision-making logic. Sev­
eral issues including the definitions of a fuzzy implication, 

0018-9472/90/0300-0404$01.00 ©1990 IEEE 
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TABLE I 

1972 
1973 
1974 
1976 
1977 
1977 
1979 
1980 
1980 
1983 
1983 
1983 
1984 
1985 
1985 
1986 
1988 

Zadeh 
Zadeh 
Mamdani & Assilian 
Rutherford eta/. 
Ostergaard 
Willaeys eta/. 
Komolov eta/. 
Tong eta/. 
Fukami, Mizumoto and Tanaka 
Hirota and Pedrycz 
Takagi and Sugeno 
Yasunobu. Miyamoto eta/. 
Sugeno and Murakami 
Kiszka. Gupta eta/. 
Togai and Watanabe 
Yamakawa 
Dubois and Prade 

compositional operators, the interpretations of sentence 
connectives "and" and "also," and fuzzy inference mech­
anisms, are investigated. Section II discusses the defuzzi­
fication strategies. Some of the representative applica­
tions of the FLC, from laboratory level to industrial 
process control, are briefly reported in Section III. Fi­
nally, we describe some unsolved problems and discuss 
further challenges in this field. 

II. Fuzzy SETS AND Fuzzy Loo1c 

F~ '1e convenience of the reader, we shall briefly 
sum1~. ,ze some of the basic concepts of fuzzy set theory 
and fuzzy logic which will be needed in this paper. A 
more detailed discussion may be found in [141], [41], [42], 
[148], [149] and [21]. · 

A. Fuzzy Sets and Terminology 

Let U be a collection of objects denoted generically by 
{u}, which could be discrete or continuous. U is called the 
universe of discourse and u represents the generic ele­
ment of U. 

Definition 1: Fuzzy Set: A fuzzy set F in a universe of 
discourse U is characterized by a membership function 
1-LF which takes values in the interval [0, 1] namely, 1-LF: 
U ~ [0, 1]. A fuzzy set may be viewed as a generalization 
of the concept of an ordinary set whose membership 
function only takes two values {0, 1}. Thus a fuzzy set F in 
U may be represented as a set of ordered pairs of a 
generic element u and its grade of membership function: 
F = {(u, 1-LF(u))lu E U}. When U is continuous, a fuzzy set 
F can be written concisely as F = fui-L,.-(u)/ u. When U is 
discrete, a fuzzy set F is represented as 

II 

F= L 1-LF(ui)/ui. 
I= I 

I( 'tion 2: Support, Crossover Point, and Fuzzy Single­
ton:· , 11e support of a fuzzy set F is the crisp set of all 
points u in U such that 1-LF(u) > 0. In particular, the 
element u in U at which 1-L,.. = 0.5. is called the crossover 
point and a fuzzy set whose support is a single point in U 
with p, F = 1.0 is referred to as fuzzy singleton. 

A rationale for fuzzy control [145] 
Linguistic approach [14o] 
Steam engine cQntrol [M] 
Analysis of control algorithms [5], [7] 
Heat exchanger and cement kiln control [80] 
Optimal fuzzy control [121] 
Finite automaton [57] 
Wastewater treatment process [ 113] 
Fuzzy conditional inference [24] 
Probabilistic fuzzy sets (control) [33] 
Derivation of fuzzy control rules [ 103] 
Predictive fuzzy control [ 135] 
Parking control of a model car [97] 
Fuzzy system stability [55] 
Fuzzy chip [107] 
Fuzzy controller hardware system [130] 
Approximate reasoning [21] 

B. Set Theoretic Operations 

. Let A and B be two fuzzy sets in U with membership 
functions 1-L A and p, 8, respectively. The set theoretic 
operations of union, intersection and complement for 
fuzzy sets are defined via their membership functions. 
More specifically, see the following. 

Definition 3: Union: The membership function 1-L Au 8 of 
the union A U B is pointwise defined for all u E U by 

Definition 4: Intersection: The membership function 
1-LAnB of the intersection An B is pointwise defined for 
all u E U by 

I-LA n 8( U) = min {p,A( ll), p, 8 ( ll)}. 

Definition 5: Complement: The membership function 
1-L ;r of the complement of a fuzzy set A is pointwise 
defined for all u E U by 

/.L ;r( U ) = 1 - /-LA ( ll ) · 

Definition 6: Cartesian Product: If A 1, • • ·, A 11 are 
fuzzy sets in U1, • • ·, U11 , respectively, the Cartesian prod­
uct of A 1, • • ·, A 11 is a fuzzy set in the product space 
U1 X · · · X ~, with the membership function 

or 

/.LA 1 X · .. X A,( ll1 ' !12 ' • • • ' till) =/.LA,( ll1 ) • /.LA/ l/ 2 ) • • • /.LA.,( U 11) • 

Definition 7: Fuzzy Relation: An n-ary fuzzy relation is a 
fuzzy set in U1 X · · · X ~, and is expressed as 

R u, X ... Xu.,= { ( ( u,' ... 'u II)' 

I-LR(u 1,···,u 11 ))1(u"···,u 11 )EU1X ···X~,}. 

Definition 8: Sup-Star Composition: If R and S are 
fuzzy relations in U X V and V X W, respectively, the 
composition of R and S is a fuzzy relation denoted by 

( .. ... 
.. 

( 
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J.lspeed 

slow medium fast 

1.0 

0.5 

0 
40 55 70 Speed 

Fig. I. Diagrammatic representation of fuzzy speeds. "'Speed'" is lin­
guistic variable with three terms: '"slow,'" '"medium."' and '"high ... 

R o S and is defined by 

R o S = { [ ( u, w) , s~p ( ,u R ( u, v) * ,u A v, w)) J , 

uEU,vEV,wEW} 

where * could be any operator in the class of triangular 
norms, namely, minimum, algebraic product, bounded 
product, or drastic product (also see Part II [150]). 

C. Linguistic Variables and Fuzzy Sets 

Definition 9: Fuzzy Number: A fuzzy number F in a 
continuous universe U, e.g., a real line, is a fuzzy set F in 
U which is normal and convex, i.e., 

max,u.F(u) = 1, (normal) 
uEU 

J.LF(A.ul + (1- A.)u2) 
~ min(,u.F(u 1),,u.F(u 2)), (convex) 

u 1,u 1 EU, A.E[0,1). 

The use of fuzzy sets provides a basis for a systematic 
way for the manipulation of vague and imprecise con­
cepts. In particular, we can employ fuzzy sets to represent 
linguistic variables. A linguistic variable can be regarded 
either as a variable whose value is a fuzzy number or as a 
variable whose values are defined in linguistic terms. 
More specifically: see the following. 

Definition 10: Linguistic Variables: A linguistic variable 
is characterized by a quintuple (x, T(x), U, G, M) in which 
x is the name of variable; T(x) is the term set of x, that 
is, the set of names of linguistic values of x with each 
value being a fuzzy number defined on U; G is a syntactic 
rule for generating the names of values of x; and M is a 
semantic rule for associating with each value its meaning. 
For example, if speed is interpreted as a linguistic vari­
able, then its term set T{speed) could be 

T(speed) ={slow, moderate, fast, 

very slow, more or less fast, · · · } 

where each term in T(speed) is characterized by a fuzzy 
set in a universe of discourse U = [0,100]. We might inter­
pret "slow" as "a speed below about 4Q_ mpi}~_' "mod­
erate" as "a speed close to 55 mph," and "fast" as "a 
speed above about 70 mph." These terms can be charac­
terized as fuzzy sets whose membership functions are 
shown in Fig. 1. 

PROCESS OUTPUT 
& STATE 

CONTROLLED 

SYSTEM 

(PROCESS) 

ACTUAL CONTROL 

NON FUZZY 

Fig. 2. Basic configuration of fuzzy logic controller (FLC). 

D. Fuzzy Logic and Approximate Reasoning 

In fuzzy logic and approximate reasoning, there are two 
important fuzzy implication inference rules named the 
generalized modus ponens ( GMP) and the generalized 
modus tollens (GMT): 

premise 1: x is A', 

premise 2: if x is A then y is B, 

consequence: y is B' 

premise 1: y is B', 

premise 2: if x is A then y is B, 

(GMP) 

consequence: x is A'. (GMT):: 
The fuzzy implication inference is based on the campo-~. 

sitional rule of inference for approximate reasoning sug­
gested by Zadeh in 1973 [146]. Here we introduce fuzzy·' 
sets A, A', B, B' via linguistic variables x, y instead of 
crisp sets in the traditional logic. The GMP, which re­
duces to "modus ponens" when A'= A and B' = B, is 
closely related to the forward data-driven inference which 
is particularly useful in the FLC. The GMT, which re- · 
duces to "modus tollens" when B' = not B and A'= not ·. 
A, is closely related to the backward goal-driven inference •. 
which is commonly used in expert systems, especially in i 
the realm of medical diagnosis. 

Definition 11: Sup-Star Compositional Rule of Inference: 
If R is a fuzzy relation in U X V, and x is a fuzzy set in U, ' 
then the "sup-star compositional rule of inference" as- ,; 
serts that the fuzzy set y in V induced by x is given by ·l 
[144] 

y=xo R 

where x o R is the sup-star composition of x and R. If the 
star represents the minimum operator, then this defini­
tion reduces to Zadeh's compositional rule of inference 
[146]. 

III. MAIN IDEA OF THE FLC 

In this section, we present the main ideas underlying 
the FLC. To highlight the issues involved, Fig. 2 shows 
the basic configuration of an FLC, which comprises four 

j 



lJ4() ~at:f FUZZY LOGIC IN CONTROL SYSTEMS: FUZZY LOGIC CONTROI.I.ER-PART I 407 

JO 

1e 
:d 

=>) 

') 

)-

,_ 

y 
,f 

_principal components: a fuzzification interface, a knowl­
se base, decision-making~ logic, and a defuzzification 

,0 :erface. 

. ;r· 

1) The fuzzification interface involves the following 
functions: 

a) measures the values of input variables, 
b) performs a scale mapping that transfers the 

range of values of input variables into corre­
sponding universes of discourse, 

c) performs the function of fuzzification that 
converts input data into suitable linguistic 
values which may be viewed as labels of 
fuzzy sets. 

The knowledge base comprises a knowledge of the 
application domain and the attendant control goals. 
It consists of a "data base" and a "linguistic (fuzzy) 
control rule base:" 

a) the data base provides necessary definitions, 
which are used to define linguistic control 
rules and fuzzy data manipulation in an FLC, 

b) the rule base characterizes the control goals 
and control policy of the domain experts by 
means of a set of linguistic control rules. 

3) The decisionmaking logic is the kernel of an FLC; 
it has the capability of simulating human decision­
making based on fuzzy concepts and of inferring 
fuzzy control actions employing fuzzy implication 
and the rules of inference in fuzzy logic. 

4) The defuzzification interface performs the follow­
ing functions: 

a) a scale mapping, which converts the range of 
values of output variables into corresponding 
universes of discourse, 

b) defuzzification, which yields a nonfuzzy con­
trol action from an inferred fuzzy control 
action. 

We are now ready to describe the main ideas underly­
ing the FLC in terms of fuzzy logic. The structural param­

\ eters involved in the design of an FLC will be discussed at 
1 a later point. 

A. Fuzzy Conditional Statements and Fuzzy Control Rules 

In an FLC, the dynamic behavior of a fuzzy system is 
characterized by a set of linguistic description rules based 

,, on expert knowledge. The expert knowledge is usually of 
the form 

IF (a set of conditions are satisfied) THEN (a set of 

consequences can be inferred). 

,. Since the antecedents and the consequents of these 
-THEN rules are associated with fuzzy concepts (linguistic ( 

I 

-rms), they are often called fuzzy conditional statements. 
In our terminology, a fuzzy control rule is a fuzzy condi­
tional statement in which the antecedent is a condition in 
its application domain and the consequent is a control 
action for the system under control. Basically, fuzzy con-

trol rules provide a convenient way for expressing control 
policy and domain knowledge. Furthermore, several lin­
guistic variables might be involved in the antecedents and 
the conclusions of t:1ese rules. When this is the case, the 
system will be-~referred to as a multi-input-multi-output 
(MIMO) fuzzy system. For example, in the case of two­
input-single-output (MISO) fuzzy systems, fuzzy control 
rules have the form: 

R 1: if xis A 1 andy is B 1 then z is C 1, 

R 2 : if x is A 2 andy is B2 then z is C2 , 

R,: if x is A, andy is B, then z is C,, 

where x, y, and z are linguistic variables representing two 
process state variables and one control variable; A;, B;, 
and C; are linguistic values of the linguistic variables x, y, 
and z in the universes of discourse U, V, and W, respec­
tively, with i = 1, 2, · · ·, n; and an implicit sentence con­
nective also links the rules into a rule set or, equivalently, 
a rule base. 

A fuzzy control rule, such as "if (x is A; and y is B) 
then (z is C)," is implemented by a fuzzy implication 
(fuzzy relation) R; and is defined as follows: 

ILR; g, IL(A;and B;--> c;/ u' v' w) 

=[I-LA;( u) and p. 8;( v)] ~ 1-Lc;( w) 

where A; and B; is a fuzzy set A; X B; in U XV; 
R; g, (A; and B;) ~ C; is a fuzzy implication (relation) in 
U X V X W; and ~ denotes a fuzzy implication function. 
As will be seen later, there are many ways in which a 
fuzzy implication may be defined. 

B. Fuzzification Operator 

A fuzzification operator has the effect of transforming 
crisp data into fuzzy sets. Symbolically, 

x = fuzzifier ( x 0 ) 

where x0 is a crisp input value from a process; x is a 
fuzzy set; and fuzzifier represents a fuzzification operator. 

C. Sentence Connective Operators 

An FLC consists of a set of fuzzy control rules which 
are related by the dual concepts of fuzzy implication and 
the sup-star compositional rule of inference. These fuzzy 
control rules are combined by using the sentence connec­
tives and and also .. Since each fuzzy control rule is 
represented by a fuzzy relation, the overall behavior of a 
fuzzy system is characterized by these fuzzy relations. In 
other words, a fuzzy system can be characterized by a 
single fuzzy relation which is the combination of the fuzzy 
relations in the rule set. The combination in question 
involves the sentence connective also. Symbolically, 

R = also ( R 1 , R 2 , • • • , R;, · · · , R ,J 
where also represents a sentence connective. 
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D. Compositional Operator 

To infer the output z from the given process states x, y 
and the fuzzy relation R, the sup-star compositional rule 
of inference is applied 

z=yo(xoR) 

where a is the sup-star composition. 

E. Defuzzification Operator 

The output of the inference process so far is a fuzzy set, 
specifying a possibility distribution of control action. In 
the on-line control, a nonfuzzy (crisp) control action is 
usually required. Consequently, one must defuzzify the 
fuzzy control action (output) inferred from the fuzzy 
control algorithm, namely: 

z 0 = defuzzifier ( z) , 

where z0 is the nonfuzzy control output and defuzzifier is 
the defuzzification operator. 

F. Design Parameters of the FLC 

The principal design parameters for an FLC are the 
following: 

1) fuzzification strategies and the interpretation of a 
fuzzification operator (fuzzifier ), 

2) data base: 
a) discretization/normalization of universes of 

discourse, 
b) fuzzy partition of the input and output spaces, 
c) completeness, 
d) choice of the membership function of a pri­

mary fuzzy set; 
3) rule base: 

a) choice of process state (input) variables and 
control (output) variables of fuzzy control rules, 

b) source and derivation of fuzzy control rules, 
c) types of fuzzy control rules, 
d) consistency, interactivity, completeness of fuzzy 

control rules; 
4) decision making logic: 

a) definition of a fuzzy implication, 
b) interpretation of the sentence connective and, 
c) interpretation of the sentence connective also, 
d) definitions of a compositional operator, 
e) inference mechanism; 

5) defuzzification strategies and the interpretation of 
a defuzzification operator (defuzzifier). 

IV. FuzziFICATION STRATEGIES 

Fuzzification is related to the vagueness and impreci­
sion in a natural language. It is a subjective valuation 
which transforms a measurement into J!. v~!u_ation of a 
subjective value, and hence it cuuld be defined as a 
mapping from an observed input space to fuzzy sets in 
certain input universes of discourse. Fuzzification plays 
an important role in dealing with uncertain information 
which might be objective or subjective in nature. 

In fuzzy control applications. the observed data are 
usually crisp. Since the data manipulation in an FLC is 
based on fuzzy set theory, fuzzification is necessary during 
an earlier stage. Experience with the design of an FLC 
suggests the following principal ways of dealing with 
fuzzification. 

1) A fuzzification operator "conceptually" converts a 
crisp value into a fuzzy singleton within a certain 
universe of discourse. Basically, a fuzzy singleton is 
a precise value and hence no fuzziness is intro­
duced by fuzzificatioh in this case. This strategy has 
been widely used in fuzzy control applications since 
it is natural and easy to implement. It interprets an 
input x 0 as a fuzzy set A with the membership 
function J.L)x) equal to zero except at the point 
x 0 , at which J.L)x 0 ) equals one. 

2) Observed data are disturbed by random noise. In 
this case, a fuzzification operator should convert 
the probabilistic data into fuzzy numbers, i.e., fuzzy 
(possibilistic) data. In this way, computational effi­
ciency is enhanced since fuzzy numbers are much 
easier to manipulate than random variables. In 
[76], an isosceles triangle was chosen to be the 
fuzzification function. The vertex of this triangle 
corresponds to the mean value of a data set, while 
the base is twice the standard deviation of the data 
set. In this way, we form a triangular fuzzy number 
which is convenient to manipulate [42]. In this 
connection, it should be noted that Dubois and 
Prade [20] defined a bijective transformation which 
transforms a probability measure into a possibility 
measure by using the concept of the degree of 
necessity. Basically, the necessity of an event, E, is 
the added probability of elementary events in E 
over the probability assigned to the most frequent 
elementary event outside of E. Based on the 
method of Dubois and Prade, the histogram of the 
measured data may be used to estimate the mem­
bership function for the transformation of probabil­
ity into possibility [17]. 

3) In large scale systems and other applications, some 
observations relating to the behavior of such sys­
tems are precise, while others are measurable only 
in a statistical sense, and some, referred to as 
"hybrids," require both probabilistic and possibilis­
tic modes of characterization. The strategy of fuzzi­
fication in this case is to use the concept of "hybrid 
numbers" [42], which involve both uncertainty 
(fuzzy numbers) and randomness (random num­
bers). The use of hybrid number arithmetic in the 
design of an FLC suggests a promising direction 
that is in need of further exploration. 

v. DATA BASE 

The knowledge base of an FLC is comprised of two 
components, namely, a data base and a fuzzy control rule 
base. We shall address some issues relating to the data 
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TABLE II 
QUANTIZATION AND PRIMARY Fuzzy SETS USING A NUMERICAL DEFINITION 

Level No. Range NB 

-o .r 11 < -3.2 1.0 
-5 - 3.2 < .r11 < - 1.6 0.7 
-4 - 1.6 < .r11 < - 0.8 0.3 
-3 -0.8 < x11 < -0.4 0.0 
-2 -0.4 < x11 < -0.2 0.0 
-1 -0.2<x11 ,;-0.l 0.0 

0 -0.1 < x 11 < +0.1 0.0 
I +0.1 < x0 < +0.2 0.0 
2 +0.2 < x0 < +0.4 0.0 
3 +0.4 < x0 < +0.8 0.0 
4 +0.8 < x0 < + 1.6 0.0 
5 + 1.6 < s0 ,; + 3.2 0.0 
6 3.2,; x0 0.0 

base in this section and to the rule base in the next 
section. The concepts associated with a data base are 
used to characterize fuzzy control rules and fuzzy data 
manipulation in an FLC. These concepts are subjectively 

' defined and based on experience and engineering judg­
ment. In this connection, it should be noted that the 
correct choice of the membership functions of a term set 
plays an essential role in the success of an application. In 
what follows, we shall discuss some of the important 
aspects relating to the construction of the data base in an 
FLC. 

NM NS ZE PS PM~ PM 

0.3 0.0 o:cr· o.o- 0.0 0.0 
0.7 0.0 0.0 . 0.0 - 0.0 0.0 
1.0 0.3 0.0 0.0 0.0 0.0 
0.7 0.7 0.0 0.0 0.0 0.0 
0.3 1.0 0.3 0.0 0.0 0.0 
0.0 0.7 0.7 0.0 0.0 0.0 
0.0 0.3 1.0 0.3 0.0 0.0 
0.0 0.0 0.7 0.7 0.0 0.0 
0.0 0.0 0.3 1.0 0.3 0.0 
0.0 0.0 0.0 0.7 0.7 0.0 
0.0 0.0 0.0 0.3 1.0 0.3 
0.0 0.0 0.0 0.0 0.7 0.7 
0.0 0.0 0.0 0.0 0.3 1.0 

For the purpose of discretization, we need a scale 
mapping, which serves to transform measured variables 
into values in the discretized universe. The mapping can 
be uniform (linear), nonuniform (nonlinear), or both. The 
choice of quantization levels reflects some a priori knowl­
edge. For example, coarse resolution could be used for 
large errors and fine resolution for small errors. Thus, in 
a three-input-one-output fuzzy system, we may have con­
trol rules of the form: 

R;: if error (e) is A;, sum of errors (ie) is B;. 

and change of error (de) is C; then output is D;. 

A.( xretization /Normalization of Universes of Discourse A simple instance of an FLC can be represented by 

The representation of uncertain information with fuzzy 
sets brings up the problem of quantifying such informa­
tion for digital computer processing. In general, the rep-

' resentation depends on the nature of the universe of 
discourse. A universe of discourse in an FLC is either 
discrete or continuous. If the universe is continuous, a 
discrete universe may be formed by a discretization of the 
continuous universe. Furthermore, a continuous universe 
may be normalized, as will be seen at a later point in this 
section. 

1) Discretization of a Universe of Discourse: Discretiza-
, tion of a universe of discourse is frequently referred to as 

quantization. In effect, quantization discretizes a universe 
into a certain number of segments (quantization levels). 
Each segment is labeled as a generic element, and forms 
a discrete universe. A fuzzy set is then defined by assign-

! ing grade of membership values to each generic element 
of the new discrete universe. A look-up table based on 
discrete universes, which defines the output of a con­
troller for all possible combinations of the input signals, 
can be implemented by off-line processing in order to 
shorten the running time of the controller [90]. In the 
case of an FLC with continuous universes, the number of 
qv ~zation levels should be large enough to provide an 
a~ .• ate approximation and yet be small to save memory 
storage. The choice of quantization levels has an essential 
influence on how fine a control can be obtained. For 
example, if a universe is quantized for every five units of 
measurement instead of ten units, then the controller is 
twice as sensitive to the observed variables. 

K 4 [ u ( k ) ] = F ( K 1 e ( k ) , K 2 ie ( k) , K 3 de ( k)], 

where F denotes the fuzzy relation defined by the rule 
base and K;,i = 1, 2, 3, 4, represents an appropriate scal­
ing mapping. In this relation, we see an analogy to the 
parameters of a conventional PID controller [63],[105], in 
which as a special case F is a linear function of its 
arguments. An example of discretization is shown in Table 
II, where a universe of discourse is discretized into 13 
levels with seven terms (primary fuzzy sets) defined on it. 
In general, due to discretization, the peformance of an 
FLC is less sensitive to small deviations in the values of 
the process state variables. 

2) Normalization of a Universe of Discourse: The nor­
malization of a universe requires a discretization of the 
universe of discourse into a finite number of segments, 
with each segment mapped into a suitable segment of the 
normalized universe. In this setting a fuzzy set is then 
defined by assigning an explicit function to its member­
ship function. The normalization of a continuous universe 
also involves a prwn knowledge of the input/ 
output space. The scale mapping can be uniform, non­
uniform, or both. One example is shown in Table III, 
where the universe of discourse, [- 6.0, + 4.5], is trans­
formed into the normalized closed interval [- 1, + 1]. 

B. Fuzzy Partition of Input and Output Spaces 

A linguistic variable in the antecedent of a fuzzy con­
trol rule forms a fuzzy input space with respect to a 
certain universe of discourse, while that in the consequent 
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TABLE III 
NoRMALIZATION AND PRIMARY Fuzzy SETs Us1No A FuN<TIONAL DEI'INITioN 

Normalized 
Universe 

Normalized 
Segments Range ur a-,. Primary Fuzzy Sets 

[- 1.0. - 0.5) [ -6.9, -4.1] -1.0 0.4 NB 
[- 0.5. - 0.3) [ -4.1. -2.2) -=o.5 0.2 NM 
[- 0.3, - 0.0) [- 2.2. -0.0 -0.2 0.2 NM 

[- 1.0, + 1.0) [- 0.0, + 0.2) [- 0.0. + 1.0) 0.0 0.2 ZE 
[ + 0.2, + 0.6) [ + 1.0, + 2.5) 0.2 0.2 PS 
[ + 0.6, + 1.0) [ + 2.5, + 4.5) 0.5 0.2 PM 

coarse 

N 

xtx 
p 

. I I . 
·1 0 +1 

(a) 

finer 

.~·. 
·1 0 +1 

(b) 

Fig. 3. Diagrammatic representation of fuzzy partition. (a) Coarse 
fuzzy partition with three terms: N, negative; ZE, zero; and P, 
positive. (b) Finer fuzzy partition with seven terms: NB, negative big; 
NM, negative medium; NS, negative small; ZE, zero; PS, positive 
small; PM, positive medium; and PB, positive big. 

of the rule forms a fuzzy output space. In general, a 
linguistic variable is associated with a term set, with each 
term in the term set defined on the same universe of 
discourse. A fuzzy partition, then, determines how many 
terms should exist in a term set. This is equivalent to 
finding the number of primary fuzzy sets. The number of 
primary fuzzy sets determines the granularity of the con­
trol obtainable with an FLC. The primary fuzzy sets 
(linguistic terms) usually have a meaning, such as NB: 
negative big; NM: negative medium; NS: negative small; 
ZE: zero; PS: positive small; PM: positive medium; and 
PB: positive big. A typical example is shown in Fig. 3, 
depicting two fuzzy partitions in the same normalized 
universe [ -1, + 1]. Membership functions having the 
forms of triangle-shaped and trapezoid-shaped functions 
are used here. Since a normalized universe implies the 
knowledge of the inputjoutput space via appropriate 
scale mappings, a well-formed term set can be achieved as 
shown. If this is not the case, or a nonnormalized universe 
is used, the terms could be asymmetrical and unevenly 
distributed in the universe. Furthermor~, the _cardinality 
of a term set in a fuzzy input ~pace determines the 
maximum number of fuzzy control rules that we can 
construct. In the case of two-input-one-output fuzzy sys­
tems, if the cardinalities of T(x) and T(y) are 3 and 7, 

1.0 0.4 PB 

respectively, the maximum rule number is 3 X 7. It should 
be noted that the fuzzy partition of the fuzzy input; 
output space is not deterministic and has no unique 
solution. A heuristic cut and trial procedure is usually 
needed to find the optimal fuzzy partition. 

C. Completeness 

Intuitively, a fuzzy control algorithm should always be 
able to infer a proper control action for every state of 
process. This property is called "completeness." The com­
pleteness of an FLC relates to its data base, rule base, or 
both. 

1) Data Base Strategy: The data base strategy is con­
cerned with the supports on which primary fuzzy sets are 
defined. The union of these supports should cover the 
related universe of discourse in relation to some level set 
E. This property of an FLC is called €-completeness. In 
general, we choose the level E at the crossover point as; 
shown in Fig. 3, implying that we have a strong belief in 
the positive sense of the fuzzy control rules which are. 
associated with the FLC. In this sense, a dominant rule 
always exists and is associated with the degree of belief 
greater than 0.5. In the extreme case, two dominant rules1 

are activated with equal belief 0.5. 
2) Rule Base Strategy: The rule base strategy has to do 

with the fuzzy control rules themselves. The property of 
completeness is incorporated into fuzzy control rules 
through design experience and engineering knowledge., 
An additional rule is added whenever a fuzzy condition is· 
not included in the rule base, or whenever the degree of 
partial match between some inputs and the predefined.' 
fuzzy conditions is lower than some level, say 0.5. The 
former shows that no control action will result. The latter. 
indicates that no dominant rule will be fired. 

D. Membership Function of a Primary Fuzzy Set 

There are two methods used for defining fuzzy sets; 
depending on whether the universe of discourse is dis· 
crete or continuous: a) numerical and b) functional. 

1) Numerical Definition: In this case, the grade of mem•: 
bership function of a fuzzy set is represented as a vector 
of numbers whose dimension depends on the degree of 
discretization. An illustrative example is shown in Table 
II. In this case, the membership function of each primary 
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Fig. 4. Example of functional definition of primary fuzzy sets. 

fuzzy set has the form of 

where 

5 

JJ-r(u)= I:a;/u;, 
i= I 

a= [0.3,0.7, 1.0,0.7,0.3]. 

2) Functional Definition: A functional definition ex­
presses the membership function of a fuzzy set in a 
functional form, typically a bell-shaped function, triangle­
shaped function, trapezoid-shaped function, etc. Such 
functions are used in FLC because they lead themselves 
to manipulation through the use of fuzzy arithmetic. The 
functional definition can readily be adapted to a change 
in the normalization of a universe. Table III and Fig. 4 
show an example of a functional definition expressed as: 

Note that if the normalized universe is changed, the 
parameters u 1, G'f should be changed accordingly. 

Either a numerical definition or functional definition 
may be used to assign the grades of membership to the 
primary fuzzy sets. The choice of grades of membership is 
based on the subjective criteria of the decision. In particu­
lar, as we mentioned before, if the measurable data might 
be disturbed by noise, the membership functions should 
be sufficiently wide to reduce the sensitivity to noise. This 
raises the issue of the fuzziness or, more accurately, the 
specificity of a membership function, which affects the 
robustness of an FLC. This issue is discussed in greater 
detail in [58]. 

VI. RuLE BAsE 

A fuzzy system is characterized by a set of linguistic 
statements based on expert knowledge. The expert knowl­
edge is usually in the form of "if-then" rules, which are 
easily implemented by fuzzy conditional statements in 
fuzzy logic. The collection of fuzzy control rules that are 
expressed as fuzzy conditional statements forms the rule 

•· J. ~ or the rule set of an FLC. In this section, we shall 
f .nine the following topics related to fuzzy . control 

I 
rules: choice of process state (input) variables and control 
(output) variables, source and derivation, justification, 

._ 
1
. types of fuzzy control rules, and properties of consistency, 

v interactivity, and completeness. 

( 

A. Choice of Process State Variables and Control Variables 
of Fuzzy Control Rules 

Fuzzy control-rules are more conveniently formulated 
in linguistic. rather than numerical tt?rms. The proper 
choice of process state variables and control variables is 
essential to the characterization of the operation of a 
fuzzy system. Furthermore, the selection of the linguistic 
variables has a substantial effect on the performance of 
an FLC. As was stated earlier, experience and engineer­
ing knowledge play an important role during this selection 
stage. In particular, the choice of linguistic variables and 
their membership function have a strong influence on the 
linguistic structure of an FLC. Typically, the linguistic 
variables in an FLC are the state, state error, state error 
derivative, state error integral, etc. 

B. Source and Derivation of Fuzzy Control Rules 

There are four modes of derivation of fuzzy control 
rules, as reported in [103]. These four modes are not 
mutually exclusive, and it seems likely that a combination 
of them would be necessary to construct an effective 
method for the derivation of fuzzy control rules. 

1) Expert Experience and Control Engineering Knowledge: 
Fuzzy control rules have the form of fuzzy conditional 
statements that relate the state variables in the an­
tecedent and process control variables in the consequents. 
In this connection, it should be noted that in our daily life 
most of the information on which our decisions are based 
is linguistic rather than numerical in nature. Seen in this 
perspective, fuzzy control rules provide a natural frame­
work for the characterization of human behavior and 
decisions analysis. Many experts have found that fuzzy 
control rules provide a convenient way to express their 
domain knowledge. This explains why most FLCs are 
based on the knowledge and experience which are ex­
pressed in the language of fuzzy if-then rules [64], [47], 
[50], [80], [82], [59], [118], [113], [58], [127], [4]. 

The formulation of fuzzy control rules can be achieved 
by means of two heuristic approaches. The most common 
one involves an introspective verbalization of humah ex­
pertise. A typical example of such verbalization is the 
operating manual for a cement kiln. Another approach 
includes an interrogation of experienced experts or opera­
tors using a carefully organized questionnaire. In this 
manner, we can form a prototype of fuzzy control rules 
for a practicular application domain. For optimized per­
formance, the use of cut and trial procedures is usually a 
necessity. 

2) Based on Operator's Control Actions: In many indus­
trial man-machine control systems, the input-output re­
lations are not known with sufficient precision to make it 
possible to employ classical control theory for modeling 
and simulation. And yet skilled human operators can 
control such systems quite successfully without having any 
quantitative models in mind. In effect, a human operator 
employs-consciously or subconsciously-a set of fuzzy 

-
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Fig. 5. Rule justification by using phase plane. (a) Phase-plane trajectory. (h) System step response. 

if-then rules to control the process. As was pointed out 
by Sugeno, to automate such processes, it is expedient to 
express the operator's control rules as fuzzy if-then rules 
employing linguistic variables. In practice, such rules can 
be deduced from the observation of human controller's 
actions in terms of the input-output operating data 
[97)-[99). 

3) Based on the Fuzzy Model of a Process: In the linguis­
tic approach, the linguistic description of the dynamic 
characteristics of a controlled process may be viewed as a 
fuzzy model of the process. Based on the fuzzy model, we 
can generate a set of fuzzy control rules for attaining 
optimal performance of a dynamic system. The set of 
fuzzy control rules forms the rule base of an FLC. Al­
though this approach is somewhat more complicated, it 
yields better performance and reliability, and provides a 
more tractable structure for dealing theoretically with the 
FLC. However, this approach to the design of an FLC has 
not as yet been fully developed. 

4) Based on Learning: Many FLCs have been built to 
emulate human decision-making behavior, but few are 
focused on human learning, namely, the ability to create 
fuzzy control rules and to modify them based on experi­
ence. Procyk and Mamdani [87) described the first self­
organizing controller (SOC). The SOC has a hierarchical 
structure which consists of two rule bases. The first one is 
the general rule base of an FLC. The second one is 
constructed by "meta-rules" which exhibit human-like 
learning ability to create and modify the general rule base 
based on the desired overall performance of the system. 
Recently, further studies relating to the SOC have been 
carried out at Queen Mary College and elsewhere [60], 
[94], [102), [95], [106). A very interesting example of a 
fuzzy rule-based system which has a learning capability is 
Sugeno's fuzzy car [97], [99]. Sugeno's fuzzy car can be 
trained to park by itself. 

C. Justification of Fuzzy Control Rules 

There are two principal approaches tO-the ·derivation of 
fuzzy control rules. The first is a heuristic method in 
which a collection of fuzzy control rules is formed by 
analyzing the behavior of a controlled process. The con­
trol rules are derived in such a way that the deviation 

from a desired state can be corrected and the control 
objective can be achieved. The derivation is purely heuris­
tic in nature and relies on the qualitative knowledge of 
process behavior. Several methods of adjustment of rule 
selection have been studied [1), [49], [7], [6]. A brief 
review of these results is given in the following. The 
second approach is basically a deterministic method which 
can systematically determine the linguistic structure 
andjor parameters of the fuzzy control rules that satisfy 
the control objectives and constraints [111], [103], [104], 
[101]. 

Mamdani [1] proposed a prescriptive algorithm for de, 
riving the "best" control rules by restricting system re~. 

sponses to a "prescriptive fuzzy band" which is specified 
by fuzzy control rules. However, the convergence of the 
prescriptive method requires a careful analysis. · 

King and Mamdani [49) introduced another useful 
method for rule justification. So·called "scale mappings" 
should be adjusted first so that the system trajectory can 
terminate on a desired state. The rule justification is done 
by referring to a closed system trajectory in a phase plane. 
A knowledge of parameter-adjusting based on phase plane 
analysis (e.g., overshoot, rise time) and an intuitive feel 
for the behavior of the closed loop system are required, 
The principle of global rule modification in symmetry and 
monotonicity is also employed. 

For example, Fig. 5 shows the system response of a 
process to be controlled, where the input variables of the 
FLC are the error (E) and error derivative (DE). The 
output is the change of the process input (CI). We 
assume that the term sets of input/output variables have 
the same cardinality, 3, with a common term {negativef, 
zero, positive}. The prototype of fuzzy control rules iS: 
tabulated in Table IV and a justification of fuzzy control 
rules is added in Table V. The corresponding rule o/ 
region i can be formulated as rule R; and has the effect 
of shortening the rise time. Rule R;; for region ii de; 
creases the overshoot of the system's response. More 
specifically, 

R;: if ( E is positive and DE is negative) 
then C/ is positive, 

R ii: if ( E is negative and DE is negative) 
then C/ is negative. 

I 
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TABLE IV 
PROTOTYPE OF ft.•zzy CONTROL RULES WITII TERM SETS 

{NEGATIVE, ZERo, PosiTivE} 

Rule No. E DE Cl Reference Point 

p z p a. e. i 
2 z N N b. f.j 
3 N z N e.g. k 
4 z p p d,h. 1 
5 z z z set point 

TABLE V 
RULE JUSTIFICATION WITH TERM SETS 

{NEGATIVE, ZERO, PosiTIVE} 

Rule No. E DE Cl Reference Range 

6 p N p i (rise time), v 
7 N N N ii (overshoot), vi 
8 N p N iii, vii 
9 p p p iv,viii 

10 p N z ix 
11 N p z xi 

TABLE VI 
PROTOTYPE OF Fuzzy CONTROL RULES WITH TERM SETS 

{NB, NM, NS. ZE, PS, PM, PB) 

Rule No. E .DE Cl Reference Point 

I PB ZE PB a 
2 PM ZE PM e 
3 PS ZE PS i 
4 ZE NB NB b 
5 ZE NM NM f 
6 ZE NS NS 
7 NB ZE NB c 
8 NM ZE NM g 
9 NS ZE NS k 

10 ZE PB PB d 
11 ZE PM PM h 
12 ZE PS PS I 
13 ZE ZE ZE set point 

TABLE VII 
RuLE JusTIFICATION WITH TERM SETs {NB, NM. NS, ZE, PS. PM, PM) 

Rule No. E DE C/ Reference Range 

14 PB NS PA1 i (rise time) 
15 PS NB NM i (overshoot) 
16 NB PS NM iii 
17 NS PB PM iii 
18 PS NS ZE ix 
19 NS PS ZE xi 

Better control performance can be obtained by using finer 
fuzzy partitioned subspaces, for example, with the term 
set (NB, NM, NS, ZE, PS, PM, PB). The prototype and the 
justification of fuzzy control rules are also given in Table 
VI and Table VII. 

A slightly modified method was suggested in [7]. It 
tracked the linguistic trajectory of a closed loop system in 

"linguistic phase plane." The main idea is that scale 
.11appings should be adjusted first to yield approximately a 
desired trajectory behavior. This can be inferred from the 
linguistic trajectories. Then rule modification can be ac­
complished by using the linguistic trajectory behavior to 
optimize the system response in the linguistic phase plane. 

decrease overshoot 
·---+ 

NBlNM NM i ZE .. ZE ZE 

NB NM NM ZE ZE ZE 

NB NS @ ZE ZE PS 

NS 

ZE 

ZE 

(a) 

E 
PS (@@ 

§§ PB i 
PM PM PB 

IE decrease rise time 
IE 

(b) 

E 

Fig. 6. Rule justification by using a linguistic phase plane. (a) Linguis­
tic trajectory with initial rules. (b) Linguistic trajectory with modified 
rules. (From Braae and Rutherford [7). 

An additional advantage of this approach is that the 
measurement noise appearing in the linguistic phase plane 
is less of a problem than that in the nonlinguistic phase 
plane. An example is shown in Fig. 6. 

An approach . to generating the rule base of an 
FLC, which is analogous to the conventional controller 
design by pole placement, is described in [6]. Braae and 
Rutherford assumed that the fuzzy control rules of an 
open system (process) and a desired closed-loop system 
were initially given. The purpose is to synthesize a linguis­
tic control element (FLC) based on the fuzzy models 
described above. The main idea is to invert the low order 
linguistic model of a certain open loop system. However, 
linguistic inversion mappings are usually incomplete or 
multivalued. So, an "approximate" strategy, which is 
somewhat heuristic and subjective, is necessary to com­
plete the inverse mapping which has a reasonable 
singled-valued solution. This approximation has substan­
tial effect on "linguistic substitution'' which further deter­
mines a fuzzy controller. This method is restricted to 
relative low order systems but it provides an explicit 
solution for rule generation of the FLC, assuming that 
fuzzy models of the open and closed systems are avail­
able. 

The systematic rule justification has recently been pro­
posed and studied by means of fuzzy relational equations 
(13], [15], [84], [125] and linguistic control rules [111], 
[103], [104], [101]. The basic notion of these two ap­
proaches is so-called "fuzzy identification." As in conven­
tional identification, the fuzzy identification comprises 
two phases, namely, structure identification and parame­
ter estimation. The studies in question deal with one, or 
both. 

Tong [Ill] introduced the concept of "logical examina­
tion" (LE) for converting process input-output data into 
a set of fuzzy control rules. Tong tackled both identifica­
tion problems simultaneously, and used a correlation 
analysis of the LE to determine the linguistic structure. 
However, it is still somewhat heuristic and subjective, and 
encounters difficulties in the identification of multivari­
able fuzzy systems. 

Takagi and Sugeno [103] proposed a fuzzy identifica­
tion algorithm for modeling human operator's control 



I 
414 1r:r.r TRANSA<TIONS oN sYsTEMS. MAN. ,\ND CYBERNETICS. vo1.. 20. No.2. MARCII/APRII. 1990 I 
actions. In this case. a suitable linguistic structure is easy where x. · · ·. y. and z are linguistic variables representing 
to find since one can observe andjor ask for the kind of the process state variables and the control variable; 
information which the operator needs, such as process A i• · · ·, Bi, and Ci are the linguistic values of the linguistic 
state variables. The fuzzy control rules to be identified variables x, · · ·, y, and z in the universes of discourse 
have the form of U, · · ·, V, anJ W, respectively, i = I, 2, · · ·, n. 

Ri: if xis Ai,· ··.andy is B; then z = fi(x,· · · ,y) 

where x, · · ·, y, and z are linguistic variables representing 
the process state variables and the control variable; 
Ai, · · ·, B; are linguistic terms of the linguistic variables 
x, · · ·, y, and z in the universes of discourse U, · · ·, V, and 
W, respectively, with i= 1,2,· · ·,n; and z is a logical 
function of the process state variables such as a linear 
function of x, · · ·, y. In this way, the problem is reduced 
to parameter estimation, which is done by optimizing a 
least-square performance index via a weighted linear re­
gression method. The inference mechanism of this FLC 
will be discussed in Part II [150]. 

Sugeno has successfully applied this method to the 
design of an FLC for navigating a model car through a 
crank-shaped curve [98] and for parking a model car in a 
garage [97], [99]. Sugeno's method provides a more sys­
tematic approach to the design of an FLC, and the 
experimental results are quite remarkable. However, some 
steps of this algorithm. such as the choice of process state 
variables, the fuzzy partition of input spaces, and the 
choice of the membership functions of primary fuzzy sets, 
depend on trial-and-error. 

Recently, Takagi and Sugeno [104] improved their algo­
rithm so that parameter estimation can be fully imple­
mented. At issue is the problem of structure identifica­
tion, which is partly addressed in this paper. Further 
research on this problem has been reported by Sugeno 
and Kang in [101]. 

Another approach based on fuzzy relational equations 
is directed at the same problems. The structure identifica­
tion requires the determination of the system order and 
time delays of discrete-time fuzzy models, while the pa­
rameter estimation reduces to the determination of the 
overall fuzzy relation matrix from the input-output data 
of the system. The reader is referred to [13],[15],[84],[125] 
for further details. 

D. Types of Fuzzy Control Rules 

Depending on their nature, two types of fuzzy control 
rules, state evaluation fuzzy control rules and object eval­
uation fuzzy control rules, are currently in use in the 
design of the FLC. 

1) State Evaluation Fuzzy Control Rules: Most FLC's 
have state evaluation fuzzy control rules which, in the 
case of MISO systems, are characterized as a collection of 
rules of the form 

R 1: if x is A 1, • • ·, and y is B 1 then z is C 1 

R2: if X is A2, ... ' andy is B2~then z is c2 

Rll: if X is All,·.·, andy is Bll then z is ell 

In a more general version, the consequent is repre­
sented as a function of the process state variables x, · · ·, y, 
I.e., 

Ri: if xis Ai,·· ·,andy is Bi then z=J;(x,···,y). 

Fuzzy control rules of this type, which are referred to 
as "state evaluation fuzzy control rules," evaluate the 
process state (e.g., state, state error, state integral) at time 
t and compute a fuzzy control action at time t as a 
function of ( x, · · ·, y) and the control rules in the rule set. 

2) Object Evaluation Fuzzy Control Rules: Yasunobu, 
Miyamoto, and Ihara [135] proposed another algorithm 
which predicts present and future control actions and 
evaluates control objectives. It is called "object evaluation 
fuzzy control," or "predictive fuzzy control." The rules in 
question, which are derived from skilled operator's expe­
rience, are referred to as "object evaluation fuzzy control 
rules." A typical rule is described as 

Ri: if (u is Ci ~ (xis Ai andy is B;)) then u is C;. 

A control command is inferred from an objective evalu­
ation of a fuzzy control result that satisfies the desired. 
states and objectives. A control command u takes a crisp 
set as a value, and x, y are performance indices for the 
evaluation of the ith rule, taking values such as "good" or 
"bad." The most likely control rule is selected through 
predicting the results (x, y) corresponding to every con- ' 
trol command ci. 

In linguistic terms, the rule is interpreted as: "if the 
performance index x is A; and index y is Bi when a 
control command u is chosen to be Ci, then this rule is· 
selected and the control command Ci is taken to be the 
output of the controller." 

In automatic train operation, a typical control rule is if 
the control notch is not changed and if the train stops in the 
predetermined allowance zone, then the control notch is not 
changed. 

It is well known that systems control encounters diffi­
culties in satisfying multiple performance indices simulta- 1 

neously and in achieving accurate control in the presence 
of disturbances. In such circumstances, fuzzy control pro· 
vides an effective framework for solution. However, the 
state evaluation fuzzy control does not evaluate the com­
puted control actions as human operators do. By contrast, 
the predictive fuzzy control provides a mechanism for 
evaluation so that the desired states and control objec­
tives can be achieved more easily. It should be noted that 
predictive control has been successfully applied to auto· 
matic train operation [135), [136], [139] as well as to 1 
automatic container crane operation systems [137]-[139]. I 
Te't' have 'hown that th;, type of control ;s capable ofl 
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E. Properties of Consistency, Interactivity, and Completeness 

1) Completeness: Please refer to Section V of this pa­
per. 

2) Number of Fuzzy Control Rules: There is no general 
procedure for deciding on the optimal number of fuzzy 

; control rules since a number of factors are involved in the 
decision, e.g., performance of the controller, efficiency of 
computation, human operator behavior, and the choice of 
linguistic variables. 

3) Consistency of Fuzzy Control Rules: If the derivation 
of fuzzy control rules is based on the human operator 
experience, the rules may be subjected to different per­
formance criteria. In practice, it is important to check on 
the consistency of fuzzy control rules in order to minimize 
the possibility of contradiction. [64], [12]. 

4) Interactivity of Fuzzy Control Rules: Assuming that a 
collection of fuzzy control rules has the form 

R;: if xis A; then z is C;, i = 1,· · · ,n. 

If an input x 0 is A;, we would expect that the control 
action z is C;. In fact, the control action z may be a 
subset or a superset of C; [12], [26], [85], [18], [19], 
depending on the definition of fuzzy implication and 
sup-star composition. This may happen as a consequence 
\ teraction between the rules. 
· _ ,1e problem of interaction is complex and not as yet 
well understood. The reported research in [12], [26], [85], 
[18], [19] indicates that interactivity of rules can be con­
trolled by the choice of fuzzy implication and sup-star 
composition. The consistency of rules may be improved 
through the use of the concept of a fuzzy clustering of 
fuzzy control rules. In this connection, it should be noted 
that Sugeno's reasoning and identification algorithm pro­
vides an alternative solution to these problems [104], 
[101]. 
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Fuzzy Logic in Control Systems: Fuzzy 
Logic Controller, -Part ~II 

CHUEN CHIEN LEE, STUDENT MEMBER, IEEE 

Abstract- During the past several years, fuzzy control has emerged as 
one of the most active and fruitful areas for research in the applications 
of fuzzy set theory, especially in the realm of industrial processes, which 
do not lend themselves to control by conventional methods because of a 
lack of quantitative data regarding the input-output relations. Fuzzy 

t control is based on fuzzy logic-a logical system that is much closer in 
spirit to human thinking and natural language than traditional logical 
systems. The fuzzy logic controller (FLC) based on fuzzy logic provides a 
means of converting a linguistic control strategy based on expert knowl­
edge into an automatic control strategy. A survey of the FLC is pre­
sented: a general methodology for constructing an FLC and assessing its 
performance is described: and problems that need further research are 
pointed out. In particular, the exposition includes a discussion of 
fuzzification and defuzzification strategies, the derivation of the databa~e 
and fuzzy control rules, the definition of fuzzy implication, and an 
analysis of fuzzy reasoning mechanisms. 

I. DEctstoNMAKING LoGic 

A S WAS noted in Part I of this paper [150], an FLC 
1( -. \may be regarded ·as a means of emulating a skilled 
ht. ... Jn operator. More generally, the use of an FLC may 
be viewed as still another step in the direction of model­
ing human decisionmaking within the conceptual frame­
work of fuzzy logic and approximate reasoning. In this 
context, the forward data-driven inference (generalized 
modus ponens) plays an especially important role. In what 
follows, we shall investigate fuzzy implication functions, 
the sentence connectives and and also, compositional 
operators, inference mechanisms, and other concepts that 
are closely related to the decisionmaking logic of an FLC. 

A. Fuzzy Implication Functions 

In general, a fuzzy control rule is a fuzzy relation which 
is expressed as a fuzzy implication. In fuzzy logic, there 
are many ways in which a fuzzy implication may be 
defined. The definition of a fuzzy implication may be 
expressed as a fuzzy implication function. The choice of a 
fuzzy implication function reflects not only the intuitive 
criteria for implication but also the effect of connective 
also. 

Manuscript received May 27. 19XH: revised July I. 19H9. _This work 
supported in part by NASA under grant NCC-2-275 and tn part by 
· ~0SR under grant X9-00!l4. 
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. , Clectrical Engineering and Computer Sciences, University of Califor­
nia. Berkeley, CA 94720. 
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1) Basic Properties of a Fuzzy Implication Function: 
The choice of a fuzzy implication function involves a 
number of criteria, which are discussed in [3], [24], [2], 
[71], [18], [52], [19], [116], [85], [72], and [96]. In particular, 
Baldwin and Pilsworth [3] considered the following basic 
characteristics of a fuzzy i~plication function: fundamen­
tal property, smoothness property, unrestricted inference, 
symmetry of generalized modus ponens and generalized 
modus tollens, and a measure of propagation of fuzziness. 
All of these properties are justified on purely intuitive 
grounds. We prefer to say that the inference (conse­
quence~ should be as close as possible to the input truth 
function value, rather than be equal to it. This gives us a 
more flexible criterion for choosing a fuzzy implication 
function. Furthermore, in a chain of implications, it is 
necessary to consider the "fuzzy syllogism" [147] associ­
ated with each fuzzy implication function before we can 
talk about the propagation of fuzziness. 

Fukami, Mizumoto, and Tanaka [24] have proposed a 
set of intuitive criteria for choosing a fuzzy implication 
function that constrains the relations between the an­
tecedents and consequents of a conditional proposition, 
with the latter playing the role of a premise in approxi­
mate reasoning. As is well known, there are two impor­
tant fuzzy implication inference rules in approximate rea­
soning. They are the generalized modus ponens (GMP) 
and the generalized modus tollens (GMT). Specifically, 

premise 1: x is A' 

premise 2: if x is A then y is B 

consequence: y is B' 

premise 1: y is B' 

premise 2: if x is A then y is B 

consequence: x is A' 

(GMP) 

(GMT) 

in which A, A', B, and B' are fuzzy predicates. The 
propositions above the line are the premises; and the 
proposition below the line is the consequence. The pro­
posed criteria are summarized in Tables I and II. We 
note that if a causal relation between "x is A" and "y is 
B" is not strong in a fuzzy implication, the satisfaction of 
criterion 2-2 and criterion 3-2 is allowed. Criterion 4-2 is 
interpreted as: if x is A then y is B, else y is not B. 

0018-9472/90/0300-0419$01.00 ©1990 IEEE 
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TABLE I 
INTUITIVE CRITERIA RELATING PRE! AND CoNS 

FOR GiVEN PRE2 IN GMP 

x is A'(Prel) y is B'(Cons) 

Criterion I .r is A y is B 

Criterion 2-1 .r is very A y is very B 
Criterion 2-2 xis very A y is B 

Criterion 3-1 x is more or Jess A v is more or Jess B 
Criterion 3-2 x is more or less A y is B 

Criterion 4-1 xis not A y is unknown 
Criterion 4-2 xis not A y is not B 

Although this relation is not valid in formal logic, we 
often make such an interpretation in everyday reasoning. 
The same applies to criterion 8. 

2) Families of Fuzzy Implication Functions: Following 
Zadeh's [146] introduction of the compositional rule of 
inference in approximate reasoning, a number of re­
searchers have proposed various implication functions in 
which the antecedents and consequents contain fuzzy 
variables. Indeed, nearly 40 distinct fuzzy implication 
functions have been described in the literature. In gen­
eral, they can be classified into three main categories: the 
fuzzy conjunction, the fuzzy disjunction, and the fuzzy 
implication. The former two bear a close relation to a 
fuzzy Cartesian product. The latter is a generalization of 
implication in multiple-valued logic and relates to the 
extension of material implication, implication in proposi­
tional calculus, modus ponens, and modus tollens [18]. In 
what follows, after a short review of triangular norms and 
triangular co-norms, we shall give the definitions of fuzzy 
conjunction, fuzzy disjunction, and fuzzy implication. 
Some fuzzy implication functions, which are often em­
ployed in an FLC and are commonly found in the litera­
ture, will be derived. 

Definition 1: Triangular Nonns: The triangular norm * 
is a two-place function from [0, 1] X [0, 1] to [0, 1], i.e., *: 
[0, 1] X [0, 1] ~ [0, 1], which includes intersection, algebraic 
product, bounded product, and drastic product. The 
greatest triangular norm is the intersection and the least 
one is the drastic product. The operations associated with 
triangular norms are defined for all x, y E [0, 1]: 

intersection 

algebraic product 

bounded product 

drastic product 

x 1\ y = min{x,y} 

x·y=xy 

x0y=max(O,x+ y-1} 

{

X y = 1 

xi'ly= y
0 

x=1 

x,y<l. 

Definition 2: Triangular Co-Nonns: The.. triangular co­
norms + is a two-place function from. [0, 1] X [0, 1] to [0, 1], 
i.e. +: [0, 1] X [0, 1] to [0, 1], which includes union, alge­
braic sum. bounded sum, drastic sum, and disjoint sum. 
The operations associated with triangular co-norms are 

TABLE II 
INTUITIVE CRITERIA Rr.I.ATIN(; PREI AND CoNs 

FOR GiVEN PRE2 IN GMT 

Criterion 5 
Criterion h 
Criterion 7 

Criterion H-1 
Criterion H-2 

y is B'(Prel) x is A'(Cons) 

y is not B x is not A 
\' is not verv B x is not very A 
)· is not ml;re or Jess B x is not more or Jess A 

y is B x is unknown 
y is B xis A 

defined for all x, y E [0, 1 ]: 

union x v y = max{x,y} 

x+y=x+y-xy 

xffiy = min{1,x + y} 

algebraic sum 

bounded sum 

drastic sum 
{

X 

xl:!y= ~ 

y=O 
x=O 
x,y> 0 

disjoint sum xily = max{min (x, 1- y ), 
min(l- x,y)}. 

The triangular norms are employed for defining conjunc­
tions in approximate reasoning, while the triangular co­
norms serve the same role for disjunctions. A fuzzy con­
trol rule, "if x is A then y is B," is represented by a 
fuzzy implication function and is denoted by A~ B, 
where A and B are fuzzy sets in universes U and V with 
membership functions I-LA and f.L 8, respectively. 

Definition 3: Fuzzy Conjunction: The fuzzy conjunction 
is defined for all u E U and v E V by 

A~B=AXB 

= J f.LA(u)*J.L 8(v)j(u,v) 
uxv 

where * is an operator representing a triangular norm. 
Definition 4: Fuzzy Disjunction: The fuzzy disjunction is 

defined for all u E U and v E V by 

A~B=AXB 

=J f.LA(u)+J.L 8(v)j(u,v) 
uxv 

where + is an operator representing a triangular co-norm. 
Definition 5: Fuzzy Implication: The fuzzy implication is 

associated with five families of fuzzy implication functions 
in use. As before, * denotes a triangular norm and + is a 
triangular co-norm. 

4.1) Material implication: 

A ~ B = (not A) + B 

4.2) Propositional calculus: 

A ~ B = (not A) + (A * B) 

4.3) Extended propositional calculus: 

A ~ B = (not A X not B) + B 

4.4) Generalization of modus ponens: 

A~B=sup{cE[0,1], A*c~B} 
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4.5) Generalization of modus tollens: 

A~ B = inf{t E (0, 1], B + t ~A} 

Based on these definitions, many fuzzy implication func­
tions may be generated by employing the triangular norms 
and co-norms. For example, by using the definition of the 
fuzzy conjunction, Mamdani's mini-fuzzy implication, Rc, 

, is obtained if the intersection operator is used. Larsen's 
product fuzzy implication, RP, is obtained if the algebraic 
product is used. Furthermore, Rbp and Rdp are obtained 
if the bounded product and the drastic product are used, 
respectively. The following fuzzy implications, which are 
often adopted in an FLC, will be discussed in more detail 

, at a later point. 

! 

I 
Mini-operation rule of fuzzy implication [Mamdani]: 

Rc =A X B 

= J pju)!\,ua(v)j(u,v). 
uxv 

Product operation rule of fuzzy implication [Larsen]: 
R, =A X B 

= J ,u)u),uiv)j(u,v). 
uxv 

Arithmetic rule of fuzzy implication [Zadeh]: 
Ra =(not A X V)EB(U X B) 

= J 1/\0-,u)u)+,ua<v))j(u,v). 
uxv 

Maxmin rule of fuzzy implication [Zadeh]: 
R"' =(A X B)U(not A XV) 

= J (,u)u)!\,ua(v))v(l-,u)u))j(u,v). 
uxv 

Standard sequence fuzzy implication: 
Rs =A XV~ U X B 

= J (,u_iu) > .ua(v))j(u, v) 
uxv 

where 

{
1 ,uA(u)~.ua(v) 

,u)u)>,ua(v)= 0 
.UA(u) > .Ua(v). 

Boolean fuzzy implication: 
Rb =(not A X V)U(U X B) 

= J (1- ,uA(u))v(,ua(v))j(u, v). 
uxv 

Goguen's fuzzy implication: 

R:,= A X V~UxB 

= J (,u_iu) » .ua(v))j(u, v) 
uxv 

where 

,u)u)» .ua(v)={~a(u) 
,U A( V) 

.UA(u) ~ .ua( v) 

.UA(u) > .Ua( v). 

We note that Zadeh's arithmetic rule follows from 
Definition 5.1 by using the bounded sum operator; 
Zadeh's maxmin rule follows from Definition 5.2 by using 
the intersection and union operators; the standard se­
quence implication follows from Definition 5.4 by using 
the bounded product; Boolean fuzzy implication follows 

from Definition 5.1 by using the union; and Goguen's 
fuzzy implication follows from Definition 5.4 by using the 
algebraic producJ:. ~ 

3) Choice of a Ftizzy Implication Function: First, we 
investigate the consequences resulting from applying the 
preceding forms of fuzzy implication in fuzzy inference 
and, in particular, the GMP and GMT. The inference is 
based on the sup-min compositional rule of inference. In 
the GMP, we examine the consequence of the following 
compositional equation: 

B'= A'o R 

where 

R fuzzy implication (relation), 
o sup-min compositional operator, 
A' a fuzzy set which has the form: 

A= fu.u)u)ju 
very A= A 2 = fu.u~(u)ju 
more or less A= A 0

·
5 = fu.u~5(u)ju 

not A= ful- ,u)u)ju. 

Similarly, in the GMT, we examine the consequence of 
the following equation: 

A'= RoB' 

where 

R fuzzy implication (relation) 
B' a fuzzy set that has the form: 

not B = f vl- .ua<u)j u 
not very B = f v 1- ,u~( v) I v 
not more or less B = f vl- ,u(~5 ( v )j v 
B = fv.ua(v)jv. 

The Case of R ,: Larsen's Product Rule: A method for 
computing the generalized modus ponens and the gener­
alized modus tollens laws of inference is described in [3]. 
The graphs corresponding to Larsen's fuzzy implication 
R, are given in Fig. 1. The graph with parameter .UA is 
used for the GMP, and the graph with ,u a is used for the 
GMT. 

Larsen's Product Rule in GMP: Suppose that A'= A a 

(a> 0); then the consequence B~ is inferred as follows: 

B~ =A a oR, 

The membership function ,uB' of the fuzzy set 
pointwise defined for all v E V by 

.Ua;,(v) =sup min{,u~~(u),,uA(tl),Ua(v)} 
11EU 

= sup S ,( 1 - ,uA( u)) 
ltEU 

where 

S, ( .UA ( u)) £ min { .UA ( u), ,u A ( u) ,u a( v)} . 

B' is p 

(A'= A}: The values of S/.u./u)) with a parameter 
,u a< v ), say ,u a< v) = 0.3 and 0.8, are indicated in Fig. 2 by a 
broken line and dotted line, respectively. The member-
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Fig. I. Diagrams for calculation of membership functions. (a) J.LR 
versus J.LA with the parameter J.Ln· (b) J.LR,, versus J.Ln with parametef! 
J.I.A' 

1.0 

0.5 
.... ······· 

0 

... ·········. 

)./eM 

1.0 

.. 0.8 

Fig. 2. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

ship function p., 8, is obtained by , 
p., B' ( v) = sup min { p., A( u), p., A( u) p., 8( v)} 

I' uEU 

= sup p.,A(u)p., 8( v) 
uEU 

p.,A(u)=l. 

{A'= A 2
}: The values of S/p.,~(u)) with a parameter 

p., 8( v ), say p., sC v) = 0.3 and 0.8, are indicated in Fig. 3 by a 
broken line and dotted line, respectively. The member­
ship function p., 8• may be expressed as 

I' 

p., 8;,( v) = sup min {p.,~( u) ,p.,A( u)~8 ( v)j 
uEU 

=p.,8(v). 

{A'= A 0·5): The values of St>(p.,~5(u)) with a parame­
ter p., sC v ), say p., 8( v) = 0.3 and 0.8, are indicated in Fig. 4 

1.0 

0.5 

0 

1.0 

0.8 

0.5 

0.3 

Fig. 3. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

0.5 

0 

J.leM 
1.0 

0.8 

Fig. 4. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

1.0 

0.5 

0 

Fig. 5. Approximate reasoning: generalized modus ponens with 
Larsen's product operation rule. 

by a broken line and dotted line, respectively. The mem­
bership function p., 8, is given by 

I' 

p.,B'( v) = sup min {p.,~5 ( u), p.,A( u )p., 8( v)} 
" uEU 

=p.,8(v). 

{A'= not A}: The values of S /- p., i u )) with a pa­
rameter p., 8( v ), say p., 8( v) = 0.3 and 0.8, are indicated in 
Fig. 5 by a broken line and dotted line, respectively. The 
membership function p.,B' is given by 

I' 

p., 81,(v) =sup min{l- p.,A(u),p.,A(u)p.,8(v)} 
uEU 
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Fig. 6. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 
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Fig. 7. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 

Larsen's Product Rule in GMT: Suppose that B' = not 
Ba (a> 0); then the consequence A~ is inferred as fol­
lows: 

A;= RP o (not Ba) 

= J J.LA(u)J.L 8 (v)/(u,v)aj(l-J.L8(v))/v. 
U XV V 

The membership function fLA• of the fuzzy set A; is 
pointwise defined for all u E U' by 

fLA'(u) = supmin{J.LA(u)J.L 8 (v),1-J.L':J(v)} 
1 

VE V 

= sup 51(1- J.L'B( v)) 
VE V 

where 

51( 1- J.L'B( v)) £ min { J.L A( u) J.L 8 ( v), 1- J.L'B( v)}. 

{B 1
= not B): The values of S/1- J.Liv)) with a pa­

rameter J.Liu), say J.Liu) = 0.3 and 0.8, are indicated in 
Fig. 6 by a broken line and dotted line, respectively. The 
membership function fLA' is given by 

I 

J.L A'( u) = sup min { J.L A( u) J.L 8 ( v), 1- J.L 8 ( v)} 
I 

V E V 

J.LA(u) 

l+J.LA(u) · 

{B 1 =not B 2
}: The values of S/1-J.L~(v)) with a 

parameter J.Liu), say J.Liu) = 0.3 and 0.8, are indicated in 

423 

1.0 

0.5 
1-ps(u) 

/ 
0.4 

0 1 
PsM 

Fig. 8. Approximate reasoning: generalized modus tollens withLarsen's 
product operation rule. 
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Fig. 9. Approximate reasoning: generalized modus tollens with 
Larsen's product operation rule. 

TABLE III 
SUMMARY OF INFERENCE RESULTS FOR GENERALIZED Moous PONENS 

A Very A More or Less A Not A 

Rc J.Ln J.Ln J.Ln 0.51\J.Ln 

RP 
J.La 

J.Ln J.La J.Ln 
1 + ILB 

Ra 
I+ J.Ln 3+2J.L 8 -,j5+4J.L 8 f5+4J.L 8 -l 
--

2 2 2 

Rm 0.5V ILB 
3-/5 15 -I 
~2-VJ.Ln ~2-VJ.Ln 

Rh O.Sv J.Ln 
3-/5 15-1 
-2-VJ.La ~2-VJ.Ln 

R, J.Ln J.L~ r;:; 
RtJ. r;:; J.L1f3 J.L'P 

Fig. 7 by a broken line and dotted line, respectively. The 
membership function fLA· is given by 

I 

fLA;(u) = sup min {J.LA(u)J.L 8 ( v), 1- J.L~( v)} 
VE V 

J.LA(u)V J.L~(u) +4- J.LA(u) 

2 

{B' = not B0·5}: The values of 51(1- J.L(15( v )) with a 
parameter fLA(u), say fLA(u) = 0.3 and 0.8, are indicated in 
Fig. 8 by a broken line and dotted line, respectively. The 

- -~-____,. 
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TABLE IV 
SUMMARY OF INFERENCE RESULTS FOR GENERALIZED MoDW> Toi.I.ENS 

NotB Not Very B Not More or Less B B 

v's -I 3- v's 
Rc 0.51\ ILA -

2
-/\ ILA -

2
-/\ ILA !L ,, 

-

R, 
!LA ILAV !L~ + 4 - ILA 2p.A +I- ..j4p.A +I 
-- ILA 
1 + ILA 2 2p.A 

Ra 
ILA 'i-2p.A+..jl+4p.A 3-..jl+p.A 

1--
2 2 2 

(v's-1 ) 
3- v's 

R, 0.5V(l-p.A) (1-p.A)V -2-1\p.A --v(l-p.) !J.AV(I-p.A) 2 A 

v's -I 3-v's 
Rn 0.5v(l-p.A) -- v{l-p.A) --v{l-p. J 

2 2 A 

Rs 1- ILA 1- !L~ 1-..;;:; 
yi +4p.~ -1 2+ ILA- V!L~ +4p.A 

ILI:l 
1 + ILA 2p.~ 2 

TABLE V 
SATISFACTION OF VARIOUS Fuzzy iMPLICATION FUNCTIONS UNDER INTUITIVE CRITERIA 

Rc R, 
Criteria 1 0 0 
Criteria 2-1 X X 
Criteria 2-2 0 0 
Criteria 3-1 X X 
Criteria 3-2 0 0 
Criteria 4-1 X X 
Criteria 4-2 X X 

Criteria 5 X X 
Criteria 6 X X 
Criteria 7 X X 
Criteria 8-1 X X 
Criteria 8-2 0 0 

membership function I-LA'• is given by 
I 

f.L A; ( u) = sup min { f.L A ( u) f.L 8 ( v) , 1 - f.L ~5 ( v) } 
ve V 

2f.LA(u) + 1- y4f.LA +4 

21-LA(u) 

Ra 

X 
X 
X 
X 
X 
0 
X 

X 
X 
X 
0 
X 

{B' =B): The values of S1(f.L 8 ( v )) with a parameter 
JLiu), say f-Liu) = 0.3 and 0.8, are indicated in Fig. 9 by a 
broken line and dotted line, respectively. The member­
ship function f.L A' is given by 

I 

f-LA;(u) =sup {f.LA(U)f.L 8(v),p.8(v)} 
VE V 

=f.LA(u). 

The remaining consequences [24] inferred by R
0

, Rc, 
Rm, R 5 , Rb, Rt. can be obtained by the same method as 
just described. The results are summarized in Tables III 
and IV. 

By employing the intuitive criteria in Tables I and II in 
Tables III and IV, we can determine hq_w weJL a fuzzy 
implication function satisfies them . .,This information is 
summarized in Table V. 

In FLC applications, a control action is determined by 
the observed inputs and the control rules, without the 

R, R., R::. Rn 

X 0 X X 
X 0 X X 
X X X X 
X 0 X X 
X X X X 
0 0 0 0 
X X X X 

X 0 X X 
X 0 X X 
X 0 X X 
X 0 0 0 
X X X X 

consequent of one rule serving as the antecedent of 
another. In effect, the FLC functions as a one-level for­
ward data-driven inference (GMP). Thus the backward 
goal-driven inference (GMT), chaining inference mecha­
nisms (syllogisms), and contraposition do not play a role 
in the FLC, since there is no need to infer a fuzzy control 
action through the use of these inference mechanisms. 

Although R c and R P do not have a well-defined logical 
structure, the results tabulated in Table V indicate that 
they are well suited for approximate reasoning, especially 
for the generalized modus ponens. 

Rm has a logical structure which is similar to Rb. Ra is 
based on the implication rule in Lukasiewicz's logic LAteph· 

However, Rm and Ra are not well suited for approximate 
reasoning since the inferred consequences do not always 
fit our intuition. Furthermore, for multiple-valued logical 
systems, Rb and Rt. have significant shortcomings. Over­
all, R s yields reasonable results and thus constitutes an 
appropriate choice for use in approximate reasoning. 

B. Interpretation of Sentence Connectives "and, also" 

In most of the existing FLC's, the sentence connective 
"and" is usually implemented as a fuzzy conjunction in a 
Cartesian product space in which the underlying variables 
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take values in different universes of discourse. As an 
;nqstration, in "if (A and B) then C," the antecedent is 

( .rpreted as a fuzzy set in the product space U X V, 
with the membership function given by 

or 

where U and V are the universes of discourse associated 
with A and B, respectively. 

When a fuzzy system is characterized by a set of fuzzy 
control rules, the ordering of the rules is immaterial. This 

·necessitates that the sentence connective "also" should 
have the properties of commutativity and associativity 
(see sections III-A and III-C in Part I and Part D in this 
section). In this connection, it should be noted that the 
operators in triangular norms and co-norms possess these 
properties and thus qualify as the candidates for the 
interpretation of the connective "also." In general, we use 

·the triangular co-norms in association with fuzzy conjunc­
tion and disjunction, and the triangular norms in associa­
tion with fuzzy implication. The experimental results 
[52]-[54], [96], [73] and the theoretical studies [18], [85], 
[116], [19] relate to this issue. 

Kiszka et al. [52] described a preliminary investigation 
· the fuzzy implication functions and the sentence con­

.• .;:ctive "also" in the context of the fuzzy model of a de 
series motor. In later work, they presented additional 
results for fuzzy implication functions and the connective 
"also" in terms of the union and intersection operators 
[53], [54]. 

Our investigation leads to some preliminary conclu­
sions. First, the connective "also" has a substantial influ­
ence on the quality of a fuzzy model, as we might expect 
Fuzzy implication functions such as R 5 , R:., and Ra with 
the connective "also" defined as the union operator, and 
Rc, RP, Rhp• and Rdp defined as the intersection, yield 
satisfactory results. These fuzzy implication functions dif­
fer in the number of mathematical operations which are 
needed for computer implementation. 

Recently, Stachowicz and Kochanska [96] studied the 
characteristics of 38 types of fuzzy implication along with 
nine different interpretations (in terms of triangular norms 
and co-norms) of the connective "also," based on various 
forms of the operational curve of a series motor. Based 
on their results, we tabulate in Table VI a summary of the 
most appropriate pairs for the FLC of the fuzzy implica­
tion function and the connective "also." 

Additional results relating to the interpretation of the 
connective "also" as the union and the intersection are 
reported in [73]. The investigation in question is based on 

plant model with first-order delay. It is established that 
the fuzzy implication functions Rc, RP, Rhp• Rdp with the 
connective "also" as the union operator yield the best 
control results. Furthermore, the fuzzy implications Rs 
and R

11 
are not well suited for control applications even 

TABLE VI 
SUITABLE PAIRS OF i\ fuzzy IMPLICATION fUNCTION 

AND CoNNECTIVE "also" 

___ Implication Rule Connective Also 

"It depends on the shape of reproduced curve which forms the set of 
fuzzy control rules. 

though they yield reasonably good results in approximate 
reasoning. 

From a practical point of view, the computational as­
pects of an FLC require a simplification of the fuzzy 
control algorithm. In this perspective, Mamdani's Rc and 
Larsen's RP with the connective "also" as the union 
operator appear to be better suited for constructing fuzzy 
models than the other methods in FLC applications. We 
will have more to say about these methods at a later 
point 

C. Compositional Operators 

In a general form, a compositional operator may be 
expressed as the sup-star composition, where "star" de­
notes an operator-e.g., min, product, etc.-which is 
chosen to fit a specific application. In the literature, four 
kinds of compositional operators can be used ·in the 
compositional rule of inference, namely: 

sup-min operation [Zadeh, 1973], 
sup-product operation [Kaufmann, 1975], 
sup-bounded-product operation [Mizumoto, 1981], 
sup-drastic-product operation [Mizumoto, 1981]. 

In FLC applications, the sup-min and sup-product 
compositional operators are the most frequently used. 
The reason is obvious, when the computational aspects of 
an FLC are considered. However, interesting results can 
be obtained if we apply the sup-product, sup-bounded­
product, and sup-drastic-product operations with differ­
ent fuzzy implication functions in approximate reasoning 
[70], [72]. The inferred results employing these composi­
tional operators are better than those employing the 
sup-min operator. Further investigation of these issues in 
the context of the accuracy of fuzzy models may provide 
interesting results. 

D. Inference Mechanisms 

The inference mechanisms employed in an FLC are 
generally much simpler than those used in a typical expert 
system, since in an FLC the consequent of a rule is not 
applied to the antecedent of another. In other words, in 
FLC we do not employ the chaining inference mecha­
nism, since the control actions are based on one-level 
forward data-driven inference (GMP). 

The rule base of an FLC is usually derived from expert 
knowledge. Typically, the rule base has the form of a 
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MIMO system 

R-{RI R2 ... Rn } 
- MIMO• MIMO• • MIMO 

where R~11Mo represents the rule: if (x is Ai and · · · , 
and y is B) then (z 1 is Ci,. · ·, zq is Di). The antecedent 
of R~.HMO forms a fuzzy set A i X · · · X Bi in the product 
space U X · · · X V. The consequent is the union of q 
independent control actions. Thus the ith rule R~ 1Mo 
may be represented as a fuzzy implication 

Ri ·(A. X .. · X B.)~ (z + .. · + z ) MIMO• 1 I I q 

from which it follows that the rule base R may be repre­
sented as the union 

R = { .u R~IMo} 
t=l 

=C0
1
[(Aix ... xBi)~(z 1 + ··· +zq)J} 

=C0
1 
[(Aix ... xBi)~z 1 )], 

n 

U [(Aix ... x Bi) ~zz)], .. ·, 
i=l 

i0l [(AiX .. ·X Bi) ~zq)]} 

= L~1 i0l [(A; X .. ·X B;) ~ zk)]} 

- {RB 1 RB 2 
• • • RBq } - MISO • MISO • • MISO • 

In effect, the rule base R of an FLC is composed of a set 
of sub-rule-bases RB~1so• with each sub-rule-base 
RB~1so consisting of n fuzzy control rules with multiple 
process state variables and a single control variable. The 
general rule structure of a MIMO fuzzy system can there­
fore be represented as a collection of MISO fuzzy sys­
tems: 

R -{RB 1 RB 2 ••• RBq } - MISO' MISO • • MISO 

where RB~11so represents the rule': if (x is Ai and · · · , 
andy is B;) then (zk is D;), i = 1,2,- · ·,n. 

Let us consider the following general form of MISO 
fuzzy control rules in the case of two-inputjsingle-output 
fuzzy systems: 

input: 
Rl: 

also R 2 : 

x is A' and y is B' 
if x is A 1 and y is B 1 then z is C 1 

if xis A 2 andy is B2 then z is C2 

z is C' 

where x, y, and z are linguistic variables representing the 

process state variables and the control variable, respec­
tively; Ai, Bi, and Ci are linguistic values of the linguistic 
variables x, y, and z in the universes of discourse U, V, 
and W, respectively, with i = 1, 2,. · ·, n. 

The fuzzy control rule "if (x is Ai and y is B) then (z 
-is ·cy• is implemented as a fuzzy implication (relation) R; 
and is defined as 

1-LR, £ I-L(A 1 and 8 1-+C,)( u, V, w) 

where "Ai and B;'' is a fuzzy set Ai X Bi in U XV; 
Ri £(A; and B)~ C; is a fuzzy implication (relation) in 
U X V X W; and ~ denotes a fuzzy implication function. 

The consequence C' is deduced from the sup-star 
compositional rule of inference employing the definitions 
of a fuzzy implication function and the connectives "and" 
and "also." 

In what follows, we shall consider some useful proper­
ties of the FLC inference mechanism. First, we would like 
to show that the sup-min operator denoted by o and the 
connective "also" as the union operator are commutative. 
Thus the fuzzy control action inferred from the complete 
set of fuzzy control rules is equivalent to the aggregated 
result derived from individual control rules. Furthermore, 
as will be shown later, the same properties are possessed 
by the sup-product operator. However, the conclusion in 
question does not apply when the fuzzy implication is 
used in its traditional logical sense [18], [19]. More specifi­
cally, we have 

Lemma 1: (A',B')o U;'= 1Ri= U;'= 1(A',B')oR;. 

Proof· 
n 

C'=(A',B')o U R; 
i=l 

n 

=(A',B')o U (A;andBi~C;). 
i=l 

The membership function J.Lc of the fuzzy set C' is 
pointwise defined for all w E W by 

J.L d W ) = ( J.L A' ( u) , J.L 8. ( v) ) o max ( J.L R 
1
( u , v, w) , 

u,v,w 

'J.LR (u,v,w),· · · ,J.LR (u,v,w)) 
2 n 

= supmin{(J.LA·(u),J.L 8 .(v)), max (J.LR
1
(u,v,w), 

u,v u,v,w 

'1-LR (u,v,w),· · · ,J.LR (u,v,w))} 
2 II 

= sup max {min [ (J.L A'( u), J.L 8.( v)), J.L R
1
( u, v, w)], 

ll,V ll,V,W 

· · · , min [ ( J.L A'( u), J.L B'( v)), J.L R,( u, v, w)]} 

= max {[ (J.LA·(u) ,J.L8.( v) )o J.LR
1
( u, v, w)], 

ll,V,W 

· · · , [ ( J.L A'( u), J.L 8'( V)) o J.L R,( U, V, W)]}. 
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Therefore 

C'= [(A', B') o R1] U [(A', B') o R2 ] 

·U ... U[(A',B')oR
11

] 

II 

U(A',B')oR; 
i~ I 

II 

= U (A',B')o(A; and B;~C;) 
i~l 

n 

~ u C.' ,. 
i~ I 

Lemma 2: For the fuzzy conjunctions Rc, RP, Rbp• and 

Rdp• we have 

(A',B')o(A; and B;~C;) 

= [A'o(A;~C;)] n[B'o(B;~C;)] 

if II. -II. 1\ II. r-A;XB;- r-A; r-B; 

(A',B')o(A; and B;~C;) 

= [A' o ( A; ~ C;)] [ B' o ( B; ~ C;)] 

Proof' 

Cf = (A',B') o(A; and B; ~ C;) 
i 

J.Lc: ~ (J.LA••J.LB') o(J.LA;XB; ~ J.Lc) 

if II = II • 11. r-A;XB; r-A; r-8;' 

= ( J.L A'' J.L B') o (min ( J.L A;, J.L B) ~ J.L c.) 

= ( ).LA', ).L B') 0 min [ ( ).LA 
1 
~ J.L C,) ' ( J.L 8; ~ J.L C

1
) l 

= supmin{[(J.LA·•I-LB'), 
ll,l' 

·min [(!-LA;~ J.Lc), (J.LB, ~ 1-Lc)]} 

=sup min {min [ I-LA·• (I-LA;~ 1-Lc)], 
ll,V 

·min[J.LB·,(J.LB, ~1-Lc)]} 

= min { [ J.L A' o ( J.L A; ~ 1-Lc)] ' [ J.L B' o ( J.L B; ~ 1-Lc)]} · 

Hence we obtain 

Let us consider two special cases that follow from the 
preceding lemma and that play an important role in FLC 
applications. 

Lemma 3: If the inputs are fuzzy singletons, namely, 
A'= u0 , B' = v0 , then the results dervied by employing 
'-famdani's minimum operation rule Rc and Larsen's 

.Jduct operation rule RP, respectively, may be expressed 
simply as 

cr./' 1\ J.Lc,( w) 

cr./'· J.Lc,( w) 

a,: 1\ J.Ld w) 
I 

a;· J.Ld w) 
I 

where cr./'= J.L 4 (u 11 )/\ J.LB(v 11 ) and cr.;= J.LA(tt 11 )·J.L 8 (v0 ). 
'I I I I 

Proof' 

1) 

Cj = [ A 1 o ( Aj~ C;)] n [ B' o ( B; ~ C;)] 

1-LC,' = min{[J.Lo o(J.LA/tt) ~ J.Lc
1
(w))], 

' [ Vo o(J.LB
1
(v) ~ J.Lc

1
(w))]} 

=min {[1-LA/tt 0 ) ~ 1-Lc;( w)], [J.L 8/ v0 ) ~ 1-Lc;( w)] }. 

2) 

Cj = [A 1 o(A; ~ C;)] · [B'o( B; ~ C;)] 

J.Lq = [ J.Lo o (J.L Al tt) ~ 1-Lc;( w)) ]· [ V0 o ( J.L B;( v) ~ .Uc,( w))] 

= [1-LA;(uo) ~ 1-Lc;( w) ]· [1-LB;( Vo) ~ 1-Lc;(w)]. 

As wil! be seen in following section, the last lemma not 
only simplifies the process of computation but also pro­
vides a graphic interpretation of the fuzzy inference 
mechanism in the FLC. Turning to the sup-product oper­
ator, which is denoted as ·, we have the following. 

n n 

Lemma I': (A', B') · U R; = U (A', B') · R;. 
i~ I i~l 

Lemma 2': For the fuzzy conjunctions Rc, RP' Rbp• 
and Rdp• we have 

(A',B') ·(A; and B; ~ C;) 

= [ A'·(A; ~ C;)] n [B'·( B; ~ C;)] 

(A',B')·(A; and B;~C;) 

= [A'·(A; ~ C;)] · [B'·(B; ~ C;)] 

if II. =II. 'II. r-A;XB; r-A; r-8;'. 

Lemma 3: If the inputs are fuzzy singletons, namely, 
A'= u 0 , B' = v0 , then the results derived by employing 
Mamdani's minimum operation rule Rc and Larsen's 
product operation rule RP, respectively, may be expressed 
simply as 

cr./' 1\ J.Ld w) 
I 

Therefore we can assert that 
ll 

Rc: J.Lc= Ucr.;/\J.Lc
1 

;~I 

ll 

RP: J.Lc= U cr.;'J.Lcl 
i~ I 

a; 1\ J.Ld w) 
I 

cr.;·J.Lc(w) 
I 

where the weighting factor (firing strength) cr.; is a mea­
sure of the contribution of the ith rule to the fuzzy 
control action. The weighting factor in question may be 
determined by two methods. The first uses the minimum 
operation in the Cartesian product, which is widely used 
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Pc 

w 

Fig. 10. Graphical interpretation of Lemma 2 under a" and Rc. 

A' • 
II 
II 
I 
I 
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I 
I 

I 
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w 

Fig. 11. Graphical interpretation of Lemma 2 under a· and RP. 

· in FLC applications. The second employs the algebraic 
product in the Cartesian product, thus preserving the 
contribution of each input variable rather than the domi­
nant one only. In this respect, it appears to be a reason­
able choice in many FLC applications. 

For simplicity, assume that we have two fuzzy control 
rules, as follows: 

R 1 : if x is A 1 and y is B 1 then z is C 1 , 

R2 : if xis A 2 andy is B 2 then z is C2 • 

Fig. 10 illustrates a graphic interpretation of Lemma 2 
under Rc and a/. Fig. 11 shows a graphic interpretation 
of Lemma 2 under RP and a/'. 

In on-line processes, the states of a control system play 
an essential role in control actions. The illPuts. .are usually 
measured by sensors and are crisp. ln some cases it may 
be expedient to convert the input data into fuzzy sets. In 
general, however, a crisp value may be treated as a fuzzy 
singleton. Then the firing strengths a 1 and a 2 of the first 

and second rules may be expressed as 

a1 = J.LA/xo) 1\ ILB
1
(Yo) · 

az = ILA
2
(xo) 1\ ILB 2(Yo) 

where J.LA(x 0 ) and J.L 8 (y 0 ) play the role of the degrees of 
partial match betwee~ the user-supplied data and the 
data in the rule base. These relations play a central role 
in the four types of fuzzy reasoning currently employed in 
FLC applications, and are described in the following. 

I) Fuzzy Reasoning of the First Type-Mamdani's Min­
imum Operation Rule as a Fuzzy Implication Function: 
Fuzzy reasoning of the first type is associated with the use 
of Mamdani's minimum operation rule Rc as a fuzzy 
implication function. In this mode of reasoning, the ith 
rule leads to the control decision 

J.Lq( w) = ai 1\ J.Lc
1
( w) 

which implies that the membership function J.Lc of the 
inferred consequence C is pointwise given by 

J.Lc( W) = J.Lc; V J.Lc2 

= [a 1 1\ J.Lc,( w)] V [ a2 1\ J.Lc
2

( w)]. 

-----------
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"o Yo 

Fig. 13. Diagrammatic representation of fuzzy reasoning 2. 

To obtain a deterministic control action, a defuzzifica­
tion strategy is required, as will be discussed at a later 
point. The fuzzy reasoning process is illustrated in Fig. 12, 
which shows a graphic interpretation of Lemma 3 in 
terms of Mamdani's method Rc. 

2) Fuzzy Reasoning of the Second Type- Larsen's 
Product Operation Rule as a Fuzzy Implication Function: 
Fuzzy reasoning of the second type is based on the use of 
Larsen's product operation rule RP as a fuzzy implication 
function. In this case, the ith rule leads to the control 
decision 

JLc•( w) =a;· p.c( w). 
I I 

Consequently, the membership function JLc of the in­
ferred consequence C is pointwise given by 

p.c( w) = JLc; V P.c2 

= [ at'P.c/w)j V [ az'JLc
2
(w)j. 

From C, a crisp control action can be deduced through 
the use of a defuzzification operator. The fuzzy reasoning 

process is illustrated in Fig. 13, which shows a graphic 
interpretation of Lemma 3 in terms of Larsen's meth­
od RP. 

3) Fuzzy Reasoning of the Third Type-Tsukamoto's 
Method with Linguistic Terms as Monotonic Membership 
Functions: This method was proposed by Tsukamoto [117]. 
It is a simplified method based on the fuzzy reasoning of 
the first type in which the membership functions of fuzzy 
sets A;, B;, and C; are monotonic. However, in our 
derivation, A; and B; are not required to be monotonic 
but C; is. 

In Tsukamoto's method, the result inferred from the 
first rule is a 1 such that a 1 = C 1(y 1). The result inferred 
from the second rule is a 2 such that a 2 = C2(y2 ). Corre­
spondingly, a crisp control action may be expressed as the 
weighted combination (Fig. 14) 

a1Y1 + azYz 
Zo = 

al + az 

4) Fuzzy Reasoning of the Fourth Type-The Conse­
quence of a Rule is a Function of Input Linguistic Variqbles: 
Fuzzy reasoning of the fourth type employs a modified 
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u v min w 
•o Yo Y2 

Fig. 14. Diagrammatic representation of fuzzy reasoning 3. 

version of state evaluation function. In this mode of 
reasoning, the ith fuzzy control rule is of the form 

R;: if (xis A;,··· andy is B;) then z = [;(x,· · · ,y) 

where x, · · ·, y, and z are linguistic variables represent­
ing process state variables and the control variable, re­
spectively; A;,·· ·, B; are linguistic values of the linguistic 
variables x, · · ·, y in the universes of discourse U, · · ·, V, 
respectively, with i = 1, 2, · · ·, n; and f; is a function of the 
process state variables x, · · ·, y defined in the input sub­
spaces. 

For simplicity, assume that we have two fuzzy control 
rules as follows: 

R 1: if xis A 1 andy is B1 then z = f 1(x,y) 

R2 : if xis A 2 andy is B2 then z = f 2(x,y). 

The inferred value of the control action from the first rule 
is atf1(x 0 , y0 ). The inferred value of the control action 
from the second rule is azfz(x0 , y0 ). Correspondingly, a 
crisp control action is given by 

atf,(xo,Yo) + azfz(Xo,Yo) 
Zo = 

This method was proposed by Takagi and Sugeno [103] 
and has been applied to guide a model car smoothly along 
a crank-shaped track [98] and to park a car in a garage 
[97], [99]. 

II. DEFUZZIFICATION STRATEGIES 

Basically, defuzzification is a mapping from a space of 
fuzzy control actions defined over an output universe of 
discourse into a space of nonfuzzy (crisp) control actions. 
It is employed because in many practical applications a 
crisp control action is required. 

A defuzzification strategy is aimed at producing a non­
fuzzy control action that best represents ·rue possibility 
distribution of an inferred fuzzy control action. Unfortu­
nately, there is no systematic procedure for choosing a 
defuzzification strategy. Zadeh [142] first pointed out this 
problem and made tentative suggestions for dealing with 

it. At present, the commonly used strategies may be 
described as the max criterion, the mean of maximum, 
and the center of area. 

- A. The max criterion method 

The max criterion produces the point at which the 
possibility distribution of the control action reaches a 
maximum value. 

B. The Mean of Maximum Method (MOM) 

The MOM strategy generates a control action which 
represents the mean value of all local control actions 
whose membership functions reach the maximum. More 
specifically, in the case of a discrete universe, the control 
action may be expressed as 

'w. 
Zo = L T 

j=l 

where wi is the support value at which the membership 
function reaches the maximum value p,z<wi), and I is the 
number of such support values. 

C. The Center of Area Method (COA) 

The widely used COA strategy generates the center of 
gravity of the possibility distribution of a control action. 
In the case of a discrete universe, this method yields 

n 

L p, z ( wi) . wi 
j=l 

Zo = ---,n.----

L P-z( wj) 
j=l 

where n is the number of quantization levels of the 
output. 

Fig. 15 shows a graphical interpretation of various 
defuzzification strategies. Braae and Rutherford [5] pre­
sented a detailed analysis of various defuzzification 
strategies (COA, MOM) and concluded that the COA 
strategy yields superior results (also see [58]). However. 
the MOM strategy yields a better transient performanct 
while the COA strategy yields a better steady-state per· 
formance [94]. It should be noted that when the MOM 
strategy is used, the performance of an FLC is similar tc 
that of a multilevel relay system [48], while the COP 
strategy yields results which are similar to those obtain 
able with a conventional PI controller [46]. An FLC basel 
on the COA generally yields a lower mean square erro 
than that based on the MOM [111]. Furthermore, tht 
MOM strategy yields a better performance than the Ma. 
criterion strategy [52]. 

III. APPLICATIONS AND RECENT DEVELOPMENTS 

A. Applications 

During the past several years, fuzzy logic has faun 
numerous applications in fields ranging from finance t 

earthquake engineering [62]. In particular, fuzzy contn 
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J.lc TABLE VII 
fuzzy CONTROL RULES FOR iNVERTED PENDULUM BALANCING 

Fig. 15. 

MAX COA MOM 

Diagrammatic representation of various defuzzification strate­
gies. 

has emerged as one of the most active and fruitful areas 
for research in the application of fuzzy set theory. In 
many applications, the FLC-based systems have proved to 

• be superior in performance to conventional systems. 
Notable applications of FLC include the heat exchange 

[80], warm water process [47], activated sludge process 
[113], [35], traffic junction [82], cement kiln [59], [118], 
aircraft flight control [58], turning process [92], robot 
control [119], [94], [106], [8], [34], model-car parking and 
turning [97]-[99], automobile speed control [74], [75], wa­
ter purification process [127], elevator control [23], auto­
mobile transmission control [40], power systems and nu­
clear reactor control [4], [51], fuzzy memory devices [107], 
[108], [120], [128], [129], [133], and the fuzzy computer 
[132]. In this connection, it should be noted that the first 
successful industrial application of the FLC was the ce-

( 1t kiln control system developed by the Danish cement 
p1ant manufacturer F. L. Smidth in 1979. An ingenious 
application is Sugeno's fuzzy car, which has the capability 
of learning from examples. More recently, predictive fuzzy 
control systems have been proposed and successfully ap­
plied to automatic train operation systems and automatic 
container crane operation systems [135]-[139]. In parallel 
with these developments, a great deal of progress has 
been made in the design of fuzzy hardware and its use in 
so-called fuzzy computers [132]. 

B. Recent Developments 

1) Sugeno's Fuzzy Car: One of the most interesting 
applications of the FLC is the fuzzy car designed by 
Sugeno. Sugeno's car has successfully followed a crank­
shaped track and parked itself in a garage [98]-[99]. 

The control policy incorporated in Sugeno's car. is rep­
resented by a set of fuzzy control rules which have the 
form: 

R;: if xis A 1, • • • andy is B1 then 

z = a1 + a; x + · · · + a1 y 0 I n 

where x, · · ·, and y are linguistic variables representing 
the distances and orientation in relation to the bound­

/ 'lries of the track; A 1, • • ·, and B1 are linguistic values of 
'( ; · · ·, and y; z is the value of the control variable of the 

ith control rule; and al1, • • ·, and a~ are the parameters 
entering in the identification algorithm [103], [99]. 

The inference mechanism of Sugeno's fuzzy car is based 
on fuzzy reasoning of the fourth type, with the parameters 

Change 
of 

Angle 

!YL. 
NM 
NS 
ZR 
PS 
PM 
PL 

NM 
NS 

ZR 

ZR 
ZR PM 

PS 

ai1, • • ·, and a~ identified by training. The training process 
involves a skilled operator who guides the fuzzy model car 
under different conditions. In this way, Sugeno's car has 
the capability of learning from examples. 

2) FLC Hardware Systems: A higher-speed FLC hard­
ware system employing fuzzy reasoning of the first type 
has been proposed by Yamakawa [130], [131]. It is com­
posed of 15 control rule boards and an action interface 
(i.e., a defuzzifier based on the COA). It can handle fuzzy 
linguistic rules labeled as NL, NM, NS, ZR, PS, PM, PL. 
The operational speed is approximately 10 mega fuzzy 
logical inferences per second (FLIPS). · 

The FLC hardware system has been tested by an appli­
cation to the stabilization of inverted pendulums mounted 
on a vehicle. Two pendulums with different parameters 
were controlled by the same set of fuzzy control rules 
(Table VII). It is worthy of note that only seven fuzzy 
control rules achieve this result. Each control rule board 
and action interface has been integrated to a 40-pin chip. 

3) Fuzzy Automatic Train Operation (ATO) Systems: 
Hitachi Ltd. has developed a fuzzy automatic train opera­
tion system (ATO) which has been in use in the Sendai­
City subway system in Japan since July 1987 .. In this 
system, an object evaluation fuzzy controller predicts the 
performance of each candidate control command and 
selects the most likely control command based on a skilled 
human operator's experience. 

More specifically, fuzzy A TO comprises two rule bases 
which evaluate two major functions of a skilled operator 
based on the criteria of safety, riding comfort, stop-gap 
accuracy, traceability of target velocity, energy consump­
tion, and running time. One is constant-speed control 
(CSC), which starts a train and maintains a prescribed 
speed. The other is the train automatic stop control 
(T ASC), which regulates a train speed in order to stop at 
the target position at a station. Each rule base consists of 
twelve object-evaluation fuzzy control rules. The an­
tecedent of every control rule performs the evaluation of 
train operation based on safety, riding comfort, stop-gap 
accuracy, etc. The consequent determines the control 
action to be taken based on the degree of satisfaction of 
each criterion. The control action is the value of the train 
control notch, which is evaluated every 100 ms from the 
maximal evaluation of each candidate control action, and 
it takes as a value a discrete number; positive value means 
"power notch," negative value means "break notch." 
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The Sendai-City subway system has been demonstrated employs MAX and MIN operations, which are imple­
to be superior in performance to the conventional PID mented by the emitter coupled fuzzy logic gates (ECFL 
ATO in riding comfort, stop gap accuracy, energy con- gates) in voltage-mode circuit systems. The linguistic in­
sumption, running time, and robustness [135], [136], [139]. puts, which are represented by analog voltages distributed 

4) Fuzzy Automatic Container Crane Operation (ACO) on data "buses, are fed into each inference engine in 
Systems: In the application of FLC to the automatic oper-- -·parailel. The results inferred from the rules are aggre-
ation of container-ship loading cranes, the principal per­
formance criteria are safety, stop-gap acc~racy, container 
sway, and carrying time. · · 

Fuzzy ACO involves two major operations: the trolley 
operation and the wire rope operation. Each operation 
comprises two function levels: a decision level and an 
activation level. Field tests of fuzzy ACO systems with 
real container cranes have been performed at the port of 
Kitakyusyu in Japan. The experimental results show that 
cargo handling ability of Fuzzy ACO by an unskilled 
operator is more than 30 containers per hour, which is 
comparable to the performance of a veteran operator. 
The tests have established that the fuzzy ACO controller 
has the capability of operating a crane as safely, accu­
rately, and skillfully as a highly experienced human opera­
tor [137]-[139]. 

5) Fuzzy Logic Chips and Fuzzy Computers: The first 
fuzzy logic chip was designed by Togai and Watanabe at 
AT&T Bell Laboratories in 1985 [107]. The fuzzy infer­
ence chip, which can process 16 rules in parallel, consists 
of four major parts: a rule-set memory, an inference­
processing unit, a controller, and an input-output cir­
cuitry. Recently, the .rule-set memory has been imple­
mented by a static random access memory (SRAM) to 
realize a capability for dynamic changes in the rule set. 
The inference-processing unit is based on the sup-min 
compositional rule of inference. Preliminary timing tests 
indicate that the chip can perform approximately 250000 
~IPS at 16-MHz clock. A fuzzy logic accelerator (FLA) 
based on this chip is currently under development [108], 
[120]. Furthermore, in March 1989 the Microelectronics 
Center of North Carolina successfully completed the fab­
rication of the world's fastest fuzzy logic chip, designed by 
Watanabe. The full-custom chip comprises 688000 tran­
sistors and is capable of making 580000 FLIPS. 

In Japan, Yamakawa and Miki realized nine basic fuzzy 
logic functions by the standard CMOS process in 
current-mode circuit systems [128]. Later, a rudimentary 
concept of a fuzzy computer was proposed by Yamakawa 
and built by OMRON Tateishi Electric Co. Ltd [132]. The 
Yamakawa-OMRON computer comprises a fuzzy mem­
ory, a set of inference engines, a MAX block, a defuzzi­
fier, and a control unit. The fuzzy memory stores lin­
guistic fuzzy information in the form of membership 
functions. It has a binary RAM, a register, and a member­
ship function generator [128]. A membership function 
generator (MFG) consists of a PROM, a pass transistor 
array, and a decoder. Every term in a term set is repre­
sented by a binary code and stored in a bmary'RA.M. The 
corresponding membership functions are generated by 
the MFG via these binary codes. The inference engine 

gated by a MAX block, which implements the function of 
the connective "also" as a union operation, yielding a 
consequence which is a set of analog voltages distributed 
on output lines. In the FLC applications, a crisp control 
command necessitates an auxiliary defuzzifier. In this 
implementation, a fuzzy computer is capable of process­
ing fuzzy information at the very high speed of approxi­
mately 10 mega-FLIPS. It is indeed an important step not 
only in industrial applications but also in common-sense 
knowledge processing. 

IV. FUTURE STUDIES AND PROBLEMS 

In many of its applications, FLC is either designed by 
domain experts or in close collaboration with domain 
experts. Knowledge acquisition in FLC applications plays 
an important role in determining the level of performance 
of a fuzzy control system. However, domain experts and 
skilled operators do not structure their decisionmaking in 
any formal way. As a result, the process of transferring 
expert knowledge into a usable knowledge base of an 
FLC is time-consuming and nontrivial. Although fuzzy 
logic provides an effective tool for linguistic knowledge. 
representation and Zadeh's compositional rule of infer-· 
ence serves as a useful guideline, we are still in need of 
more efficient and more systematic methods for knowl­
edge acquisition. 

An FLC based on the fuzzy model of a process is 
needed when higher accuracy and reliability are required. 
However, the fuzzy modeling of a process is still not well 
understood due to difficulties in modeling the linguistic 
structure of a process and obtaining operating data in 
industrial process control [13], [84], [111], [125], [104], 
[101]. 

Classical control theory has been well developed and 
provides an effective tool for mathematical system analy­
sis and design when a precise model of a system is 
available. In a complementary way, FLC has found many 
practical applications as a means of replacing a skilled 
human operator. For further advances, what is needed at 
this juncture are well-founded procedures for system de­
sign. In response to this need, many researchers are 
engaged in the development of a theory of fuzzy dynamic 
systems which extends the fundamental notions of state 
(6], controllability [31], and stability [77], [44], [89], [55]. 

Another direction of recent exploration is the concep­
tion and design of fuzzy systems that have the capability 
to learn from experience. In this area, a combination of 
techniques drawn from both fuzzy logic and neural net­
work theory may provide a powerful tool for the design of 
systems which can emulate the remarkable human ability 
to learn and adapt to changes in environment. 
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ELECTRONIC 
DESIGN 

MARK FACTS 
imulating human reasoning could prove quite lucrative 
for companies working with neural networks and fuzzy 
logic. Market Intelligence Research Corp. expects total 
revenues for neural networks and fuzzy logic combined to 

grow from $300 million last year to $10 billion by 1998. MIRC forecasts 
compound annual revenue growth of about 65% in its report, Imitating 
Human Reasoning: the Viability and Commercialization of Neural 
Networks and Fuzzy Logic. 

Fuzzy logic is intended to develop multi valued rather than binary 
logic than can simulate human response to continuous rather than 
discrete choices. Neural networks focus on simulating the high connec­
tivity between the many cells making up the human brain. Of the two, 
fuzzy logic will grow more rapidly until mid-decade, when neural 
networks will recapture the lead in growth rate. 

Japan is prevailing in fuzzy logic technology, having applied it in at 
le "'00 applications. In consumer electronics, some video cameras 
ul _;"zy logic for focusing. In neural networks, Japan is expected to 
be a strong competitor with the U. S. For its part, Europe is playing 
catch-up, but major players Philips, Siemens, and Thomson are moving 
into both areas. 

Standard software and ICs are expected to displace engineering 
development tools and customer applications as product segments. 
Neural networks are working their way into financial and industrial 
environments; in the U. S., the military continues to fund neural net­
work applications. In fuzzy logic, industrial and automotive applica­
tions are predicted to overtake the consumer electronics segment 

~HO'I1 RO RRODUO'I1S 

ost 486SX-based PCs were built with a vacant upgrade 
socket Until now, there was no upgrade part to fill that 
vacancy. The OverDrive processors from Intel, which fit 
into the empty socket, increase performance up to 70%. 

The part is currently available in two versions, one for 16- and 20-MHz 
systems and one for 25-MHz systems. Unlike a math coprocessor, the 
part improves both floating-point and integer performance on all 
DOS, Windows, OS/2, and Unix applications. The processor is based on 
the Intel's DX2 speed-doubling technology, where the internal clock 
rate is twice that of the external rate. 

In most cases, however, installing the processor doesn't require any 
modifications to the computer. The company says that users should be 
able to install the OverDrive processor in five minutes. The 16/20-
MHz part sells for $549 and the 25-MHz version costs $699. A 486DX 
part will be available in the fall and a DX2 part should appear in early 
1993. Contact Intel Crop., 3065 Bowers Ave., Santa Clara, CA 95051; 
(800) 538-3373. CIRCLE 481 

kit that enables engineers to implement fuzzy logic on 
Motorola microcontrollers has a version of FIDE, a fuzzy 
inference development environment Motorola developed 
with Aptronix. The basic kit, for $195, has a computer­

based course that teaches users how to apply fuzzy logic to their 
applications, an introductory version of FIDE, related software, and 
documentation. For board-level, in-circuit emulation, a $600 kit in­
cludes an M68HC05EVM emulator (through August). Users need a PC 
AT or compatible with one floppy drive, a 40-Mbyte hard drive, VGA 
monitor, DOS 3.30 with Windows 3.0, though DOS 5.0 is recommended. 
Contact Motorola's Microprocessor and Memory Technologies Group, 
6501 William Cannon Dr. W, Austin, TX 78735-8598. CIRCLE 482 

INC has reduced the price of its DOS-based PLDesigner 
System 200 to $495 (from $1,950) and its System 300 to 
$795 (from $2,950) through August The System 200, 
though an entry-level system, has MINC's high-level 

Design Synthesis Language, functional simulation, and automatic de­
vice selection and device fitting. System 300 can implement multiple­
device designs. Optional interfaces link the software to PC-based 
schematic capture systems. Contact MINC, 6755 Earl Dr., Colorado 
Springs, CO 80918; (719) 590-1155. CIRCLE 483 

long similar lines, Actel Corp. has cut the price by one­
third of its Action Logic System (ALS) Release 2.1. The 
system is used to design and program the company's Act 1 
and 2 field-programmable gate arrays. Release 2.1 is a 

complete FPGA design, debugging, and programming system for the 
Act 1 and 2 devices. The system supplies automatic placement and 
routing for the devices, along with in-circuit diagnostics, minimizing 
design verification. For PCs, Act 1 goes for $1995, Act 2 for $3495. For 
Sun systems, Act 1 goes for $3995, Act 2 for $5495. CIRCLE 484 
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WHAT'S NEW 

FROM TilE lARGEST MROM TO TilE FASTEST 
FIFO, COUNT ON SHARP TO DEUVER. 

The pursuit of greater densities 
-and new applications -
drives Sharp just as it does sys­
tem designers. 

The new LH543620, for 
example, is a 1024 x 36 unidi­
rectional FIFO with the most 
fully synchronous set of features 
available, including five pro­
grammable flags, independently 
synchronized operation of 

input/output ports, and dupli­
cate enables at each end. Full 
word-width and fast cycle times 
qualify the LH543620 for even 
the most high-end instrumenta­
tion, DSP and data communica­
tions system applications. 

Sharp is now proud to offer 
the world's largest Mask ROM 
- the 32 Mb LH5332000 -
with a 200 ns access time in 

IMAGINATION AT WORK 

SHARP AND INTEL 
FORGE FlASH MEMORY 

PARTNERSHIP. 

precision pro­
cessing of elec­
tronic compo-
nents improves 
yields via Class 

News of an historic alliance 
between Sharp and Intel, 
announced in March, focused 
attention on Sharp's Fukuyama 
plant in Hiroshima, Japan, 
where Intel's flash memory 
products will be manufactured. 

Fukuyama's CIM (Computer 
Integrated Manufacturing) system 
is the industry's most advanced, 
using software designed at Sharp's 
R&D hub in Camas, Washington, 
to enable a super-clean manufac­
turing and quality control envi­

ronment virtually untouched 
by human hands. The use 
of robotics for submicron-

level, ultra-high-

1 clean room standards. 
Intel will also benefit from 

Sharp's $800 million investment 
in a third, 8" wafer, .5 micron 
feature size semiconductor pro­
duction line at Fukuyama, sched­
uled to go on line in July 1992. 

either a X 8 or X 16 configura­
tion. It's one in a new line of 
MROMs using Sharp's NOR 
flat-cell technology to achieve 
faster speeds, higher densities, 
lower operating voltages and 
better manufacturability. 

Sharp is the longtime leader 
in MROM production, world­
wide, with an amazing 350 mil­
lion chips sold since 1979. 

SHARP IN THE U.S.A. 

From its new 
production and 
research facility 

I C DESIGN IN WASHINGTON 
BENEFITS U.S MANUFACTURERS. 

in Camas, Washington, Sharp 
has the ability to promptly 
develop application-specific 
ICs and new processing tech­
nologies to match the unique 
requirements of North 

American manufacturers. 
Why Camas? A supportive 

business climate, skilled labor 
pool and geophysical advantages 
- including excellent ground 
water quality, essential for a 

future waferfab 
-all made 
the Southwest 
Washington site 
a natural. 

FAST-EMERGING MARKET 

\. 

FROM SHARP MINDS 
COME SHARP PRODUCTSTM 

FOR MORE INFORMATION CALL SHARP AT 1·800-642-0261 EXT. 900 

CIRCLE 176 FOR U.S. RESPONSE CIRCLE 177 FOR RESPONSE OUTSIDE THE U.S. 
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mTERDEPARTMENTAL 
Department of Electrical Engineering, FT-10,· 
(206) 543-6990 (office), 543-6061 (secretary), 543-2150 (main office), 543-3842 (FAX). 

TO: 
FROM: 
SUBJECT: 

TIE Office, TIE Students & Campus Students of EE595. 
Robert J. Marks II 
Course Project 

EE595 PROJECT 

July 7, 1991 

You are to read one or more papers in fuzzy systems from a scholarly journal or 
conference Proceedings.* Two "short" papers (such as letters to the editor) will be 
considered as a single paper. Your knowledge of the paper will be tested in two ways: 

1. A one page type written summary of the paper 

2. A short oral presentation before the class. 

A complete xerox copy of the paper you wish to present will be due in class on 
-----------· Those who hand in the sheet late will, at minimum, be 
chosen to go first. This sheet will be stapled to the paper copy. Please fill out the 
following information: 

your name ________________________________________ ___ 

author(s) _____________________ _ 

paper title. ________________________________ _ 

Journal name. _________________________________ _ 

volume _______ . pages _______ . year ________ _ 

In case of duplication of papers, one entry will be asked to change. If no consensus can 
be reached, this will be determined by a flip of the coin. 

Immediately prior to your presentation, be prepared to give the instructor a copy 
of of you summary stapled to a complete copy of the paper. For both the written and oral 
presentations, you will be graded on the clarity of your presentation. 

Suitable journals include IEEE Transactions on Systems, Man & Cybernetics, 
IEEE Transactions on Neural Networks, IEEE Transactions on Patern Analysis & 
Machine Intelligence, Fuzzy Sets & Systems and, The International Journal of 
Approximate Reasoning. Magazines, such as Expert and IEEE Spectrum are not 
suitable. Neither are lay publications like Scientific American and Omni. Paper 
collection volumes, such as Fuzzy Models for Pattern Recognition (Bezdek & Pal, 
IEEE Press, 1992) are excellent sources of classic papers. Many conference records, 
such as Proceedings of '92 FUZZ-IEEE (IEEE Press) contain suitable papers. 

*Innovative projects concerning fuzzy systems may be proposed in lieu of a paper review. 



Points for a Good Oral Presentation 

1. There is no substitute for experience. Practice your presentation with a critical friend. 

2. Be enthusiastic. To be enthusiastic, act enthusiastic. Modulate your voice. Smile. 

3. A presentation that runs overtime is a bad presentation. Except for rare exceptions, no 
one listens to you after your time has expired. Their attention is on the clock and 
other things. If there is to much material to present, only present the most 
important points. 

4. Present concepts and not a lot a math. Communicate with English - not equations. Do 
not read equations. 

5. Use your overhead transparencies (or slides) as your notes. Don't read your slides. 
Don't read your presentation. 

6. Any good oral presentation has three parts: 
(a) Introduction: (tell them what you're going to tell them.) 
(b) Body: (tell them.) 
(c) Conclusion: (tell them what you told them.) 
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Project Description for EE499 or EE599 

Robert J. Marks II 

There are six tapes available from IEEE on Fuzzy Systems. 

• Lotfi Zadeh, "Advanced Concepts and Structures" 

• Enrique Ruspini, "Introduction to Fuzzy Set Theory and Fuzzy Logic" 

• James C. Bezdek, "Fuzzy Logic and Neural Networks for Pattern Recog­
nition" 

• James Keller, "Fuzzy Logic and Neural Networks for Computer Vision" 

• Hamid R. Berenji, "Fuzzy Logic and Neural Networks for Control Sys­
tems" 

• Piero Bonissone, "Information Processing with Fuzzy Logic" 

For one credit, choose five of these tapes. For each tape, write a review 
of the presentation and contents. The review should read similar to a book 
review. There is no specified length of the review. It should be long enough 
to summarize the contents and provide an overall critique. 

The tapes will be available from Ruth Wagner Bennett for two night 
check out. VCR's are available in the undergraduate library. 

1 
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Fuzzy Control Systems: 
Clear Advantages 
Michael Reinfrank 

Since 1987 the Japanese city of 
Sendai has had a driverless subway 
system that is automatically oper­
ated by a so-called fuzzy control­
ler. Whereas in Europe the term 
"fuzzy" has long aroused negative 
associations, the Japanese are in­
creasingly embracing the concept 
and applying it. For instance, fuzzy 
logic can decide on the optimum 
time for a car to shift gears, can 
manage the amount of suction 
needed by a vacuum cleaner, and 
can even limit subject movement in 
video cameras. But now the fuzzy 
wave has also reached Europe. 

Fuzzy Control 

What is a fuzzy controller? As 
far as the operation of a subway 
system is concerned, the problem 
can be simplified as follows: the 
positions of accelerator lever and 
brake lever must be determined on 
the basis of available measured 
data (e.g. current speed, position) 
and desired targets (e.g. required 
speed curve). Basically, there are 
three possible ways of achieving 
this (Fig. 1). The most widespread 
method is that of manual opera­
tion, i.e. the translation of mea­
sured data and target requirements 
into acceleration and braking ac­
tions by the driver. If, however, we 
wish to automate this operation 
(one possible way of increasing the 
frequency of trains in local public 

Dr. Michael Reinfrank, 
SiemensAG, 
Corporate Research and 
Development, 
Munich, Germany 

transport), the classical approach is 
based on the following principle: 
mathematical models are used to 
provide as accurate a description as 
possible of the technical process 
controlled by the driver, and this 
model is then used as the basis for 
algorithmic methods, such as so­
called PID controllers. Conversely, 
with fuzzy control, it is not the 
technical system that is modeled, 
but the manner in which a human 
process controller acts, i.e. how 
the driver drives the train. 

But how is a subway train driven? 
Interviews with drivers and techni­
cians result in the formulation of 
rules such as the following: If the 
train is a short distance from the 
station and is traveling at average 
speed, then an average braking 
force is required. 

A central problem in this respect 
is the term "average speed," which 
must be described in formal terms 
so that such a rule can be processed 
in a computer. The first possible 
solution to this problem is shown in 
Figure 2: the normal speed range 
of a subway train is broken down 
into sections in each of which a 
clear definition is made: yes, 40 
km/h is an average speed or no, 39 
km/hisnotanaveragespeed. Such a 
solution entails two problems. No 
subway driver or technician is able 
with certainty to draw a precise di­
viding line between what is and 
what is not an average speed. Even 
if such unambiguously defined 
limits were available, controls 
based on these would result in a 
jerky ride at the points of transition 
between one speed range and the 

next, since the above rule, for 
example, is not applied at all at 
39 km/h but is wholly enforced at 
40 km/h. 

This is where fuzzy logic and fuz­
zy control enter the picture. Such 
systems make it possible to pro­
duce a gradual transition in speed, 
as shown in Figure 2. There are 
speed ranges in which the question 
"Is this an average speed?" can be 
clearly answered with yes or no; 
the transitions between ranges, 
however, are fluid or fuzzy. A 
speed of 40 km/h corresponds only 
to a certain extent to a subway 
driver's concept of an average 
speed- and only to that extent will 
a rule responding to such a speed 
be satisfied and applied. It is im­
portant to note that fuzzy control 
does not necessarily have anything 
to do with fuzzy data, but with fuz­
zy control concepts used in the pro­
cessing of data - of both the fuzzy 
and non-fuzzy kind. 

Typically, a fuzzy control con­
sists of 20 to 100 such rules that are 
run through in a loop. Measured 
data and reference variables are in­
putted into the control at defined 
intervals; the output from the con­
trol comprises control actions or 
manipulated variables derived us­
ing these rules. Consequently, a 
fuzzy controller is a real-time ex­
pert system used in process auto­
mation that employs fuzzy logic in 
order to represent qualitative vari­
ables. Both the gradual decision­
making functions and the rules and 
their execution are coupled to very 
elementary operations, which pro­
vides the basis for specific software· 
and hardware support (fuzzy 
chips), and thus permits efficient, 
real-time-capable solutions. Con­
sidering fuzzy controllers as real­
time expert systems, their relation 
to neuronal networks is of particu­
lar interest. Both systems are 
based on the same principle: they 
attempt to model human thought 
processes and, in particular, the 
soft decisions that occur in such 
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EE400: Introduction to Fuzzy Systems 

Fuzzy Inference Engines 

Robert J. Marks II 

1 Inference Engines 

1.1 Introduction 

The fuzzy inference engine is the foundation of most fuzzy expert systems and control systems. From a 
linguistic description of cause and effect of a process, a fuzzy inference engine can be designed to emulate 
the process. 

1.2 Fuzzy If-Then Rules 

Cause and effect statements of a process are stated through if-then rules. Consider the following pedi­
gogical example wherein the success of an undergraduate as a graduate student is inferred through 
consideration of their undergraduate grade point averages (GPA's) and their performance on the GRE 
analytic test. 

• IF an undergraduate's GPA is high AND their GRE score is high, THEN an undergraduate 
student will make an excellent graduate student, 

• OR, IF 

- their GPA is high AND their GRE score is fair, 

- OR their GPA is fair AND their GRE score is high. 

THEN an undergraduate student will make a good graduate student, 

• OR IF their GPA is fair AND their GRE score is fair, THEN an undergraduate student will make 
an average graduate student, 

• OR, OTHERWISE, the undergraduate student will make a poor graduate student, 

Note, first, the operations of IF, THEN, AND and OR. Each can be interpreted in a fuzzy sense. 
The fuzzy linguistic variables are written in bold. These rules can be simplified using the following 
linguistic variable abbreviations. 

A for average, 
E for excellent 
F for fair 
G for good 
H for high, 
L for low, 
p for poor 
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The If-Then Rules can then be written as 

If GPA isH 
Or, If [GPA is F 

Or GPA isH 
Or, If GPA is F 
Or, If [GPA is P 

And 
And 
And 
And 

GREis H, 
GREis H, 
GREis F), 
GREis F, 

Then E 

Then G 
Then A 

OR GRE is P), Then P 
The If portions of these statements are referred to as antecedents. The Then portions are the conse­

quents. 

1.2.1 Fuzzy Numerical Interpretation of the Antecedent 

The first step in building the fuzzy inference engine is quantification of the linguistic variables using fuzzy · 
membership functions. Consider again our example about students. Possible membership functions for· 
low, high and very high are shown at the top of Figure 1. The 'low' membership function is denoted 
by JlL-GRE(S) where S is the GRE score. Similarly, the 'fair' and 'high' membership functions are 
JlF-GRE(S) and JlH-GRE(S). The midpoint of 'fair' is at a score of 700. The higher the score, the 
greater the membership in 'excellent' scores. 

Similarly, three membership fuctions for low, fair and high undergraduate GPA's is shown in the 
center of Figure 1. They are, repectively, I'L-GPA(G), IJF-GPA(G) and IJH-GPA(G) where G is the 
GPA. 

Given the GPA and GRE score of a student, the definitions of each of the antecedents can be evaluated 
using these membership definitions. To illustrate, suppose the GRE score of Student X is 720. With 
reference to the top of Figure 2, the following GRE membership functions are ascertained. 

PL-GRE(720) = 0 

PF-GRE(720) = 0.8 

PH-GRE(720) = 0.2 

If Student X has an undergraduate GPA of 3.7, the corresponding membership functions have values of 

IJL-GPA(3.7) = 0 

PF-GPA(3.7) = 0.6, 

PH-GPA(3.7) = 0.4. 

Assume the minimum operation if used for the fuzzy 'and'. (Other fuzzy intersetion and union operations 
can also be used.) Then the the composite membership for the antecedent·, GPA isH And GREis H, is 

IJGPA isH And GREis H = min{JJH-GPA(3.7), PH-GRE(720) 
= min(0.4, 0.2) 

= 0.2 

The consequent for a G graduate student is a bit longer 

ll[GPA is F And GREis H) Or [GPA isH And GREis F] = max[min~0.6,0.2),min(0.4,0.8)) 
= 0.4 

2 
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Figure 1: (top) Fuzzy. membership functions for L, F and H scores for the analytic GRE test; (center) 
fuzzy membership functions for L, F and H GPA's; (bottom) fuzzy membership functions for P, A, G 
and E prospects for graduate student success. 

. .. 
'' 

3 



;U-r::-SAI 
0.8 /..--L. )A. 

I / ) / J.I-SAT 

i 
! 

~~ s 
720 8oo 

3.0 

O,G 

·==- ~ 
0 2 4 b (, 8 

Figure 2: Student X has an GRE score of720. Thus, as shown in the top figure, Student X's membership 
in the set of fair GP A's is 0.2 and high GRE scores is 0.5. Since Student X's GPA is 3.7, his/her 
membership in the set of high GPA's is 0.6 and in very high GPA's is 0.4. The weighted consequent 
membership functions, shown on the bottom, yield 0.0 for poor, 0.2 for average, 0.6 for good and 0.4 
for excellent. The center of mass for the sum of these two weighted curves is the defuzzified consequent. 
The result is 5.33, roughly half way between average and good.·, 
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In summary, the the weights of the consequents for the running example are 

p => max(O,O) = 0 
A => min(0.6,0.8) = 0.6 
G => max[ min(0.6,0.2), min(0.4,0.8] = 0.4 •J:·<~eH;f~. 
E => min(0.4,0.2) = 0.2 

1.2 .. 2 Defuzzification: Finding the Crisp Consequent 'J_;¥t~~t:: 

The goal, however, is to have a single assessment of the performance forecast for Student X: Tli8"four.··. ' 
numerical consequents can be combined into a single crisp assessment. The process of doing s<>oiw'eteued'.: 
to as· defuzzification. · ·~ ';;,;:#~~--;:-:-::. 

With reference to the bottom membership functions in Figure 1, let J.lp ( x) be the membershi~ _' 
function for P, J.lA(x) be for A and JlG(x) be for G and J.lE(x) for E. Defuzzification ilv~~,., 
by specifying a measure of central tendancy of the consequent membership functions wheJb,the:·<Nt~-- -­
membership function is assigned a value of 0.0, the A membership function a value of 0.2, G a. value oL 
0.6 and theE membership function a value of 0.4. There are a number of ways this can be don& ··-.~~'"' 

By a measure of central tendancy, we mean an assessment of the 'middle' of the weighted m~hiP.~ 
functions. Recall the probability density function. Commonly used measures of central tendaney fOr'·· · 
PDF's include the mean, mode and median. If p(x) is the probability density function, then · 

mean= 1: x p(x)dx, 

mode = arg max p( x) 

and the median is the solution to the equation 

!
median 

1
oo 1 

p(x)dx = . p(x)dx = 2' 
-oo med1an 

In many PDF's, the mean, mode and median are equal. 
Defuzzification depends on the measure of central tendancy used. Two methods can be illlistrated:.1--­

with the plot on the bottom of Figure 2. Each membership function is multiplied by its corresponding;, 
weight. 

1. If the mode is used, the defuzzification predicts that Student X will be an 'average' gf&duate 
student. When the mode is used for defuzzification, the crisp consequent can be expr~~'~" · 
linguistic variable. 

2. If the mean is used, the linguistic varibles of P, A, G and E must be quantified. As il~l8tl~~~;~~~: 
the plot on the bottom of Figure 2, let P have a numerical value of 2, A a value of 4, a· a, 
6 and assign 8 to E. The function for which the center of mass (mean) is to be compute<Li&;' 

f(x) = O.OJ.tp(x) + 0.2J.tA(x) + 0.4J.ta(x) + 0.6J.tE(x) 

The center of mass for the defuzzification, D, is 

D 

5 

f~oo x f(x)dx 

f~oo f(x)dx 
5.33 

''. 



Matrix Description 
Fuzzy If-Then rules, in many cases, can be expressed in matrix form. We repeat the If-Then rules of 

the rul)ning example. 

If GPA isH And GREis H, Then E 
Or, If [GPA is F And GREis H, 

Or GPA isH And GREis F), ThenG 
Or, If GPA is F And GREis F, Then A 
Or, If [GPA is P 

OR GRE is P], Then P 
Alternately, an exhaustive list of antecedants can be made and the corresponding consequent assigned. 

For this example, 

If GPA isH And GREis H, ThenE 
Or, If GPA isH And GREis F, Then G 
Or, If GPA isH And GREis P, Then P 
Or, If GPA is F And GREis H,· ThenG 
Or, If GPA is F And GREis F, Then A 
Or, If GPA is F And GREis P, Then P 
Or, If GPA is P And GREis H, ThenP 
Or, If GPA is P And GREis F, Then P 
Or, If GPA is P And GREis P, ThenP 

This list of rules can, in turn; be expressed concisely in a linguistic rule matrix. 

GRE .IJ./ GPA => L F H 

R=> 
L p p p 

F p A G 
(1) 

H p G E 

1.3 Generalization 

The previous example can be generalized. Let On be the nth object of the antecedent. Assume On 
is calibrated into Kn fuzzy membership functions. For example, o1 is a GPA calibrated into· K 1 = 
3 membership functions. Let { t'nk jl :::; k :::; K n} be linguistic descriptors of On with corresponding 
membership functions {Jlnk(on)ll:::; k:::; Kn}· The fuzzy if-then rules can then be written as 

If 01 is ft and 02 is~ and · · · and On is Rn and · · · and ON is 4;, then cis RK1 ,K2 , •• ·KN 

where c is the consequent desc.ribed by the relationship R, N is the number of antecedents and e: is 
a vector whose components are t'nk· The R matrix for the running example is shown in Equation 1. 

Let the J entries of R be calibrated using J membership functions, {Jlj(x)jl :::; j :::; J}. Let the 
weight of the jth membership function have weight Wj. The ce.f!.ter of mass defuzzification follows as 

''. 
(2) 
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Let the area of the jth membership function be denoted by 

The center of mass of the jth membership function is 

m1=j
00 

xf..'J(x)dx 
. -oo Aj 

The defuzzification in Equation 2 can then be written as 

In many cases, all of the areas are equal. In such cases 

"Lf=l Wjffij 
d= J 

"Lj=l Wj 

(3) 

Consider, again, defuzzification of the weighted membership functions shown at the bottom for 
Figure 2. Clearly, the areas of all membership functions are equal. The center of massses are 

Thus 

mp = 2,mA = 4,ma = 6,mE = 8 

d = 0 X 2 + 4 X 0.6 + 6 X 0.4 + 8 X 0.2 
0.6 + 0.4 + 0.2 

5.33 

or, roughly hi;l.lf way between average and good. 

1.4 Variations 

There exist numerous variations on the operations in fuzzy inferencing. Here are a few. 

(4) 

• Operations other than min and max can be used for the fuzzy inferencing. Sum-product inferencing 
uses multipication for the fuzzy and and addition for the fuzzy or. 

• Defuzzification by clipping the membership function rather than weighting is commonly used. An 
example is shown in Figure 3 for the student assessment example in the previous section. (Compare 
to the defuzzification on the bottom of Figure 2. 
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Figure 3: An alternate method of defuzzification. The membership functions are clipped and the corre­
sponding center of mass evaluated. 
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Problems 

1. Assess the forecasted performance of Student X using Yager logic with a value of w other that 
infinity. Use membership weighting and center of mass for defuzzification. 

2. Assess Student X using sum-product inferencing. Comment on the need, if any, to recalibrate the 
consequent membership functions. 

3. Assess Student X using the weighted membership functions in Figure 2 when the median is used 
for defuzzification. 

4. Generate a defuzzification formula of the type in Equation 3 when, as illustrated in Figure 3, 
clipping is used. Assume defuzzification is performed using the center of mass. 

5. What is the change in the assessment of Student X when clipping is used in center-of mass 
defuzzification? 

6. Consider fuzzification of a number followed immediately by defuzzification using the same set of 
fuzzy membership functions. If the membership functions are, say, Gaussian in shape, then the 
defuzzification will be different that the original number. What are conditions on the membership 
function shapes that will result in these values being equivalent? 

· .. 
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Fuzzy Inference Engines 

1 Inference Engines 

1.1 Introduction 

Robert J. Marks II 

The fuzzy inference engine is the foundation of most fuzzy expert systems and control systems. From a 
linguistic description of cause and effect of a process, a fuzzy inference engine can be designed to emulate 
the process. 

1.2 Fuzzy If-Then Rules 

Cause and effect statements of a process are stated through if-then rules. Consider the following pe1i­
gogical example wherein the success of an undergraduate as a graduate student is inferred through 
consideration of their undergraduate grade point averages (GPA's) and their performance on the GRE 
analytic test. • 

• IF an undergraduate's GPA is high AND their GRE score is high, THEN an undergraduate 
student will make an excellent graduate student, 

• OR, IF 

- their GPA is high AND their GRE score is fair, 

- OR their GPA is fair AND their GRE score is high. 

THEN an undergraduate student will make a good graduate student, 

• OR IF their GPA is fair AND their GRE score is fair, THEN an undergraduate student will make 
an average graduate student, 

• OR, OTHERWISE, the undergraduate student will make a poor graduate student, 

Note, first, the operations of IF, THEN, AND and OR. Each can be interpreted in a fuzzy sense. 
The fuzzy linguistic variables are written in bold. These rules can be simplified using the following 
linguistic variable abbreviations. 

A for average, 
E for excellent 
F for fair 
G for good 
H for high, 
L for low, 
p for poor 

1 



The If-Then Rules can then be written as 

If 
Or, If 

Or, If 
Or, If 

GPA isH 
[GPA is F 
Or GPA isH 
GPA is F 
[GPA is P 

And 
And 
And 
And 

GREis H, 
GREis H, 
GREis F), 
GREis F, 

Then E 

Then G 
Then A 

OR GRE is P), Then P 
The If portions of these statements are referred to as antecedents. The Then portions are the conse­

quents. 

1.2.1 Fuzzy Numerical Interpretation of the Antecedent 

The first step in building the fuzzy inference engine is quantification of the linguistic variables using fuzzy 
membership functions. Consider again our example about students. Possible membership functions for 
low, high and very. high are shown at the top of Figure 1. The 'low' membership function is denoted 
by flL-GRE(S) where S is the GRE score. Similarly, the 'fair' and 'high' membership functions are 
flF-GRE(S) and flH-GRE(S). The midpoint of 'fair' is at a score of 700. The higher the score, the 
greater the membership in 'excellent' scores. 

Similarly, three membership fuctions for low, fair and high undergraduate GPA's is shown in the 
center of Figure 1. They are, repectively, flL-GPA(G), flF-GPA(G) and flH-GPA(G) where G is the 
GPA. 

Given the GPA and GRE score of a student, the definitions of each of the antecedents can be evaluated, 
using these membership definitions. To illustrate, suppose the GRE score of Student X is 720. With 
reference to the top of Figure 2, the following GRE membership functions are ascertained. 

flL-GRE(720) = 0 

flF-GRE(720) = 0.8 

flH-GRE(720) = 0.2 

If Student X has an undergraduate GPA of 3.7, the corresponding membership functions have values of 

flL-GPA(3.7) = 0 

flF-GPA(3.7) = 0.6, 

flH-GPA(3.7) = 0.4. 

Assume the minimum operation if used for the fuzzy 'and'. (Other fuzzy intersetion and union operations 
can also be used.) Then the the composite membership for the antecedent, GPA isH And GREis H, is 

flGPA isH And GREis H min[flH-GPA(3.7), flH-GRE(720) 
min(0.4, 0.2) 

0.2 

The consequent for a G graduate student is a bit longer 

fl[GPA is F And GREis H) Or [GPA isH And GREis F) 

2 

max[min(0.6, 0.2), min(0.4, 0.8)) 

0.4 
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Figure 1: (top) Fuzzy membership functions for L, F and H scores for the analytic GRE test; (center) 
fuzzy membership functions for L, F and H GPA's; (bottom) fuzzy membership functions for P, A, G 
and E prospects for graduate student success. 
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Figure 2: Student X has an GRE score of 720. Thus, as shown in the top figure, Student X's membership 
in the set of fair GPA's is 0.2 and high GRE scores is 0.5. Since Student X's GPA is 3.7, his/her 
membership in the set of high GPA's is 0.6 and in very high GPA's is 0.4. The weighted consequent 
membership functions, shown on the bottom, yield 0.0 for poor, 0.2 for average, 0.6 for good and 0.4 
for excellent. The center of mass for the sum of these two weighted curves is the defuzzified consequent. 
The result is 5.33, roughly half way between average and good. 
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In summary, the the weights of the consequents for the running example are 

p => 
A => 
G => 
E => 

max(O,O) 
min(0.6,0.8) 
max[ min(0.6,0.2), min(0.4,0.8] 
min(0.4,0.2) 

0 
0.6 
0.4 
0.2 

1.2.2 Defuzzification: Finding the Crisp Consequent 

The goal, however, is to have a single assessment of the performance forecast for Student X. The four 
numerical consequents can be combined into a single crisp assessment. The process of doing so is referred 
to as defuzzification. 

With reference to the bottom membership functions in Figure 1, let pp(x) be the membership 
function for P, f.lA(x) be for A and f.lG(x) be for G and f.lE(x) for E. Defuzzification is performed 
by specifying a measure of central tendancy of the consequent membership functions when the FtP 
membership function is assigned a value of 0.0, the A membership function a value of 0.2, G a value of 
0.6 and theE membership function a value of 0.4. There are a number of ways this can be done. 

By a measure of central tendancy, we mean an assessment of the 'middle' of the weighted membership 
functions. Recall the probability density function. Commonly used measures of central tendancy for 
PDF's include the mean, mode and median. If p(x) is the probability density function, then 

mean= I: x p(x)dx, 

mode = arg max p( x) 

and the median is the solution to the equation 

l
median loo 1 

p(x)dx = . p(x)dx = -. -oo m~mn 2 

In many PDF's, the mean, mode and median are equal. 
Defuzzification depends on the measure of central tendancy used. Two methods can be illustrated 

with the plot on the bottom of Figure 2. Each membership function is multiplied by its corresponding 
weight. 

1. If the mode is used, the defuzzification predicts that Student X will be an 'average' graduate 
student. When the mode is used for defuzzification, the crisp consequent can be expressed as a 
linguistic variable. 

2. If the mean is used, the linguistic varibles of P, A, G and E must be quantified. As illustrated in 
the plot on the bottom of Figure 2, let P have a numerical value of 2, A a value of 4, G a value of 
6 and assign 8 to E. The function for which the center of mass (mean) is to be computed is 

f(x) = O.Opp(x) + 0.2f.lA(x) + 0.4pa(x) + 0.6f.lE(x) 

The center of mass for the defuzzification, D, is 

D 

5 

f~oo x f(x)dx 

f~oo f(x)dx 
5.33 



Matrix Description 
Fuzzy If-Then rules, in many cases, can be expressed in matrix form. We repeat the If-Then rules of 

the ru:qning example. 

If GPA isH And GREis H, Then E 
Or, If [GPA is F And GREis H, 

Or GPA isH And GREis F], ThenG 
Or, If GPA is F And GREis F, Then A 
Or, If [GPA is P 

OR GREis P], Then P 
Alternately, an exhaustive list of antecedants can be made and the corresponding consequent assigned. 

For this example, 

If GPA is II And GREis H, Then E 
Or, If GPA isH And GREis F, Then G 
Or, If GPA isH And GREis P, Then P 
Or, If GPA is F And GREis H, Then G 
Or, If GPA is F And GREis F, Then A 
Or, If GPA is F And GREis P, Then P 
Or, If GPA is P And GREis H, Then P 
Or, If GPA is P And GREis F, Then P 
Or, If GPA is P And GREis P, Then P 

This list of rules can, in turn, be expressed concisely in a linguistic rule matrix. 

GRE .1)./ GPA =? L F H 

R=? 
L p p p 

F p A G 
(1) 

H p G E 

1.3 Generalization 

The previous example can be generalized. Let On be the nth object of the antecedent. Assume On 
is calibrated into Kn fuzzy membership functions. For example, o1 is a GPA calibrated into· K1 = 
3 membership functions. Let {Cndl ::; k ::; Kn} be linguistic descriptors of On with corresponding 
membership functions {J.tnk(on)ll::; k::; Kn}· The fuzzy if-then rules can then be written as 

If 01 is~ and o2 is 'h and · · · and On is l,. and · · · and ON is&, then cis RK,,K2 , ... KN 

where c is the consequent described by the relationship R, N is the number of antecedents and l,l is 
a vector whose components are fnk. The R matrix for the running example is shown in Equation 1. 

Let the J entries of R be calibrated using J membership functions, {J.tj(x)ll ::; j ::; J}. Let the 
weight of the jth membership function have weight Wj. The center of mass defuzzification follows as 

(2) 

6 



Let the area of the jth membership function be denoted by 

The center of mass of the jth membership function is 

The defuzzification in Equation 2 can then be written as 

~f= 1 WjAjmj 
d= J 

~j=l WjAj 

In many cases, all of the areas are equal. In such cases 

(3) 

Consider, again, defuzzification of the weighted membership functions shown at the bottom for 
Figure 2. Clearly, the areas of all membership functions are equal. The center of massses are 

Thus 

d 

mp = 2,mA = 4,ma = 6,mE = 8 

0 X 2 + 4 X 0.6 + 6 X 0.4 + 8 X 0.2 
0.6 + 0.4 + 0.2 

5.33 

or, roughly half way between average and good. 

1.4 Variations 

There exist numerous variations on the operations in fuzzy inferencing. Here are a few. 

(4) 

• Operations other than min and max can be used for the fuzzy inferencing. Sum-product inferencing 
uses multipication for the fuzzy and and addition for the fuzzy or. 

• Defuzzification by clipping the membership function rather than weighting is commonly used. An 
example is shown in Figure 3 for the student assessment example in the previous section. (Compare 
to the defuzzification on the bottom of Figure 2. 
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Figure 3: An alternate method of defuzzification. The membership functions are clipped and the corre­
sponding center of mass evaluated. 
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Problems 

1. Assess the forecasted performance of Student X using Yager logic with a value of w other that 
infinity. Use membership weighting and center of mass for defuzzification. 

2. Assess Student X using sum-product inferencing. Comment on the need, if any, to recalibrate the 
consequent membership functions. 

3. Assess Student X using the weighted membership functions in Figure 2 when the median is used 
for defuzzification. 

4. Generate a defuzzification formula of the type in Equation 3 when, as illustrated m Figure 3, 
clipping is used. Assume defuzzification is performed using the center of mass. 

5. What is the change in the assessment of Student X when clipping is used m center of mass 
d efuzzifica tion? 

6. Consider fuzzification of a number followed immediately by defuzzification using the same set of 
fuzzy membership functions. If the membership functions are, say, Gaussian in shape, then the 
defuzzification will be different that the original number. What are conditions on the membership 
function shapes that will result in these values being equivalent? 

g 



SPRING 1996 

Fuzzy Parameter 
Adaptation in 
Optitnization: 

Some Neural Net Training 
Examples 

Payman Arabshahi, University ofAiabama in Huntsville 
J ai J. Choi, Boeing Computer Services 
Robert]. Marks II, University ofWal·hington 
Thomas P C audell, University ofNew M exico 

MA..W NONLINEAR OPTIMIZATION ALGORITHMS, INCLUDING THOSE 
used to train various types of artificial neural networks, strive to opti­

mize some pedonnance measure through judicious selection of one or more 
parameters. For instance, in the backpropagation-traincd multilayer per­
ceptron, 1 the performance measure is convergence speed. This speed is af­
fected by the choice of learning and momentum parameters. Similarly, in 
the Adaptive Resonance Theory (ART 1) network, 2 the choice of a vigilance 
parameter affects the number of classe.~ into which the data are classified. 
The values of these parameters can be adapted during training to improve 
the performance measure(s) of the neural network. Table 1 summarizes the 
performance measures and parameters associated with several neural net ar­
chitectures. The theme introduction on pp. 36-42 provides some back­
ground on these various methods. 

Training parameters are typically chosen and adapted by a "neural smith," 
using human judgment, experience, and. heuristic rules. For example, a 
smooth error surface in the backpropagation training of a layered perceptron 
suggests use of a long step, whereas a steep surface suggests smaller ~1:eps. 
Note that this description is fuzzy: the terms "smooth," "Ion g," "steep," and 
"smaller" are e.ach fuzzy linguistic variables. 

Rather than choosing and optimi't.ing these parameters manually, how­
evt!r, we talce advantage of lb.e fact that the linguistic variables used in human 
judgment can in many cases be quantified into a rule-based fuzzy inference 
engine. This fuzzy controller then replaces the neural smith. This method­
ology for choosing i:raining parameters can be applied to other neural net­
works, including Kohonen?s self-organizing maps3 and layered perceptrons 
trained by other methods, such as random search.4 But beyond neural net~, 
this research has led us to adopt the principles of fi.t7.7.y logic in a way that can 
potentially ?e broadly applieJ to a wide variet-y of algorithms used in adap­
tation and optimization. 

1 070-9924/96/ JS.OO f'l l 996 IEEE 57 
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Alpha Cuts 

a-cuts are used to make a fuzzy set crisp (8_ ?) 

a & ~-cuts can be used for tri-valent logic. 



Fuzzy Convex Combinations 

Crisp Convex Combinations 1 0 

Fuzzy Convex Combination of two fuzzy 
sets 11 

Properties 

Existence 12 







uua®[J®UU©® Exampl 

n Assume that we need to evaluate student 
applicants based on their GPA and GRE scores. 

n For simplicity, let us have three categories for 
each score [High (H), Medium (M), and Low(L)] 

n Let us assume that the decision should be 
Excellent (E), Very Good (VG), Good (G), Fair (F) 
or Poor (P) 

n An expert will associate the decisions to the GPA 
and GRE score. They are then Tabulated. 



wV®[J®DU©® Example 

Fuzzy if-then Rules 
.-------------~ 

lf l(-l - rrE)Ir ~ HIGH and r·I~F .f"~:Jitl [1- HIGH , ~~'I~": ~l ~-\-.lc-, l ~ l , ~~~ ~11f ·r"~· 1
1 ~~ 

then I ~ ~- ~ - · ~ .- ·EXCELLENT 

If Chc ~F~l'-: is LOW ian~ I" 

then 
etc 

I Fuzzy Linguistic Variables j I Fuzzy lOgic ] 

Antecedent Consequent 





zz 
Fuzzifier converts a crisp input into a 
vector of fuzzy membership values. 

n The membership functions 

• reflects the designer's knowledge 
• provides smooth transition between fuzzy 

sets 
• are simple to calculate 

Typical shapes of the membership function 
are Gaussian, trapezoidal and triangular. 
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Transform the crisp antecedents into 
a vector of fuzzy membership values. 

Assume a student with GRE=900 and 
GPA=3.6. Examining the 
membership function gives 

J.lGRE = { J.lL = 0.8 , J.lM = 0.2, J.lH = 0} 

J.lGPA = { J.lL = 0 , J.lM = 0.6, J.lH = 0.4} 
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~~ill ______, 
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0.4 
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0.2 0.0 
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The student is 
GOOD if 

the GRE is HIGH 
and the GPA is 
MEDIUM) 
OR 

4 , l:l 
1 
(the GRE is 

I 
MEDIUM and the 
GPA is MEDIUM) 
The consequent 
GOOD has a 
membership of 
max(0.6,0.2)=0.6 
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An Alternate Approach: Fuzzy set 
with the largest membership value is 
selected. 
Fuzzy decision: 

{B, F, G,VG, E} = {0.2, 0.4, 0.6, 0.0, 0.0} 
Final Decision (FD) = Fair Student 
If two decisions have same 
membership max, use the average of 
the two. 
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Consequent is or SN if a or b or c or d or f 

Consequent Membership== max(a,b,c,d,e,f) == 0.5 

Use General Mean Aggregation: 
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alrro~w lliJ~®@J Variations 
s t -n 

Instead ofmin(x,y) for fuzzy AND ... 

Use => x • y 

Instead ofmax(x,y) for fuzzy OR ... 

Use => min( I, x + y) 
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Most of the concepts we 
use in daily life, such as 
large, small, heavy and 
light, are vague or 
"fuzzy." But machines 
must normally be provided 
with precise definitions. 
Fuzzy control is changing 
this situation, and opening 
up the use of vague data. 
This makes it possible in 
many cases to build 
controls that are more 
robust, cheaper and 
require less energy to 
operate. Indeed, fuzzy 
logic is the only possible 
answer to a number of 
challenging control 
problems. 
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Fuzzy Control Systems: 
Clear Advantages 
Michael Rein frank 

Since 1987 the Japanese city of 
Sendai has had a driverless subway 
system that is automatica lly oper­
ated by a so-called fuzzy control­
ler. Whereas in Europe the term 
"fuzzy" has long aroused negative 
associations , the Japanese are in­
creasingly embracing the concept 
and applying it. For instance, fuzzy 
logic can decide on the optimum 
time for a car to shift gears, can 
manage the amount of suction 
needed by a vacuum cleaner, and 
can even limit subject movement in 
video cameras. But now the fuzzy 
wave has also reached Europe. 

Fuzzy Control 

What is a fuzzy controller? As 
far as the operation of a subway 
system is concerned, the problem 
can be simplified as follows: the 
positions of accelerator lever and 
brake lever must be determined on 
the basis of available measured 
data (e.g. current speed, position) 
and desired targets (e. g. required 
speed curve). Basically, there are 
three possible ways of achieving 
this (Fig. 1). The most widespread 
method is that of manual opera­
tion , i.e. the translation of mea­
sured data and target requirements 
into acceleration and braking ac­
tions by the driver. If, however, we 
wish to automate this operation 
(one possible way of increasing the 
frequency of trains in local public 

Dr. Michael Reinfrank, 
SiemensAG, 
Corporate Research and 
Development, 
Munich, Germany 

transport) , the classical approach is 
based on the following principle: 
mathematical models are used to 
provide as accurate a description as 
possible of the technical process 
controlled by the driver, and this 
model is then used as the basis for 
algorithmic methods , such as so­
called PID controllers. Conversely, 
with fuzzy control , it is not the 
technical system that is modeled, 
but the manner in which a human 
process controller acts , i.e. how 
the driver drives the train . 

But how is a subway train driven? 
Interviews with drivers and techni­
cians result in the formulation of 
rules such as the following: If the 
train is a short distance from the 
station and is traveling at average 
speed, then an average braking 
force is required. 

A central problem in this respect 
is the term "average speed," which 
must be described in formal terms 
so that such a rule can be processed 
in a computer. The first possible 
solution to this problem is shown in 
Figure 2: the normal speed range 
of a subway train is broken down 
into sections in each of which a 
clear definition is made: yes , 40 
km/h is an average speed or no , 39 
km/h is not an average speed. Such a 
solution entails two problems. No 
subway driver or technician is able 
with certainty to draw a precise di­
viding line between what is and 
what is not an average speed. Even 
if such unambiguously defined 
limits were ava ilable, controls 
based on these would result in a 
jerky ride at the points of transition 
between one speed range and the 

next, since the above rule , for 
example, is not applied at all at 
39 km/h but is wholly enforced at 
40 km/h. 

This is where fuzzy logic and fuz­
zy control enter the picture. Such 
systems make it possible to pro­
duce a gradual transition in speed, 
as shown in Figure 2. There are 
speed ranges in which the question 
"Is this an average speed?" can be 
clearly answered with yes or no; 
the transitions between ranges , 
however, are fluid or fuzzy. A 
speed of 40 km/h corresponds only 
to a certain extent to a subway 
driver's concept of an average 
speed - and only to that extent will 
a rule responding to such a speed 
be satisfied and applied . It is im­
portant to note that fuzzy control 
does not necessarily have anything 
to do with fuzzy data , but with fuz­
zy control concepts used in the pro­
cessing of data - of both the fuzzy 
and non-fuzzy kind. 

Typically, a fuzzy control con­
sists of 20 to 100 such rules that are 
run through in a loop. Measured 
data and reference variables are in­
putted into the control at defined 
intervals ; the output from the con­
trol comprises control actions or 
manipulated variables derived us­
ing these rules . Consequently, a 
fuzzy controller is a real-time ex­
pert system used in process auto­
mation that employs fuzzy logic in 
order to represent qualitative vari­
ables. Both the gradual decision­
making functions and the rules and 
their execution are coupled to very 
elementary operations, which pro­
vides the basis for specific software 
and hardware support (fuzzy 
chips) , and thus permits efficient , 
real-time-capable solutions. Con­
sidering fuzzy controllers as real­
time expert systems, their relation 
to neuronal networks is of particu­
lar interest. Both systems are 
based on the same principle: they 
attempt to model human thought 
processes and , in particular, the 
soft decisions that occur in such 



SR: What was the process that led 
up to the decision to invest in a light 
rail system here in San Diego? 

Senator Mills: It was a very sim­
ple process. As the president of 
the Senate of California, I carried 
Senate Bill 101 , which created the 
San Diego Metropolitan Transit 
Development Board - MTDB - , 
gave it the responsibility of build­
ing a rail system , and the money to 
implement that decision. There 
wasn't any general public, govern­
ment, or business support for it at 
the time. But when the money was 
provided, it was spent , and that 
created the south leg of our transit 
system. Today, there's general 
support for the system. 

SR: Once the decision had been 
approved, how did the San Diego 
MTDB go about awarding contracts 
for the rolling stock, and why did it 
decide on Duewag? 

Senator Mills: One of the provi­
sions of Senate Bill 101 was that 
only service-proven equipment 
could be purchased for the city's 
public transportation. That provi­
sion was designed to avoid the kind 
of costly experimentation that has 
taken place in some other Ameri­
can cities. With that in mind, the 
decision to buy Duewag equipment 
in particular stemmed from a field 
trip by MTDB members to Edmon­
ton and Frankfurt. In those cities 
the Board members saw U2 cars in 
operation. They were favorably 
impressed by the appearance, 
characteristics, and maintenance 
records of the vehicles , as well as 
the statements of the operators. 
The result was that a decision was 
made to buy U2 cars. 

SR: The San Diego Light Rail 
System is considered to be the most 
successful in the United States. 
What makes it superior to other sys­
tems? 

Senator Mills: It is the most suc­
cessful of the new light rail systems 
in the United States for two 
reasons. Number one, from a fi­
nancial point of view, it has per-

D 
The San Diego 
Light Rail System: 
Facts & Figures 

Overview: Two lines, 32 miles of 
track, 71 Siemens Duewag U2 
light ra il vehicles (with 75 more on 
order) powered by 600-V DC 
overhead lines, 33 stations, over 
4000 free parki ng places 
at 16 park-and-ride lots. Total 
personnel: 264. 

Operating performance: 50,000 
passengers per weekday, over 15 
million passengers carried in 1990, 
93.15 pe rcent farebox recovery 
rate, 98.9 percent on ti me. 

Fares: Self-service system, 
random inspection by roving fare 
inspectors, one percent evasion 
rate. Fares range from 50 cents to 
$2.00 one way, depending on 
distance; multi-ride, day-tripper, 
and monthly passes available . 

Organization: The city's light rail 
system is run by San Diego 
Trolley, Inc (SDTI). which is a 
wholly owned subsidiary of the 
Metropolitan Transit Development 
Board (MTDB) The Board's area 
of jurisdiction covers 
approximately 570 square miles, 
and a population of 1.7 million. 

formed better than any other sys­
tem. It has covered a larger per­
centage of operating costs out of 
the farebox than any other pas­
senger railway in the United 
States. San Diego's system also 
costs less per passenger mile to run 
than any other urban passenger 
railway in the United States. 

The second point is that the sys­
tem has generated more patronage 
than any other new system by a 
wide margin. We are now carrying 
50,000 people per day on week­
days , and the figure is steadily in­
creasing. Since January 1983 we 
have never had a month of opera­
tions in which we didn't carry at 
least as many people as in the same 
month the year before. On the 
south line we are now carrying 

about three times as many people 
as when the line opened. 

SR: What accounts for this? Has 
the MTDB promted the system in the 
media? 

Senator Mills: There has been 
virtually no promotional effort. 
We once bought a billboard. 
We've only paid for advertising 
twice. That's it. Other than that we 
do a good job of public relations 
and public education. But for the 
most part ridership grows as a re­
sult of favorable reports made by 
patrons. 

SR: You said the system costs less 
to operate than any other system in 
the United States. What accounts 
for that? 

Senator Mills: I should have 
added that the system cost less to 
build than any other. You see, 
there was a concerted effort to 
keep costs down. The stations were 
built inexpensively. The repair 
facilities are inexpensive, prefabri­
cated buildings. The signalling sys­
tem is traditional. It's a simpler 
system than many others. This 
keeps capital costs and operating 
costs relatively low; the latter is 
particularly important because per­
sonnel account for 50 percent of 
our expenses. 

SR: Major sections of the line 
network were created by rebuilding 
freight train track, and today the 
city's rail system is being used by 
both light rail vehicles and freight 
trains. What economic advantages 
has the city derived from this dual 
use strategy? 

Senator Mills: This was an impor­
tant innovation. It was a very low­
cost way of acquiring right-of-way 
for the passenger railway, while at 
the same time maintaining rail con­
nections for many local industries. 
Most American cities have rail 
lines running through them , but 
surprisingly, none have taken 
advantage of them as San Diego 
has. 

SR: Your rolling stock is remark­
ably clean and free of graffiti. What 

measures has the MTDB taken to 
ensure such a high level of mainte­
nance? 

Senator Mills: Our policy is to 
take any graffiti off the cars as soon 
as it 's discovered. When a car com­
pletes a run it's checked. If graffiti 
is found , the car is taken out of ser­
vice at that point; not an hour la­
ter, and not at the end of the day. 
The result is that people don't put 
graffiti on. People who do that 
kind of thing like to see their work. 
But if they never see it again they 
don't have the motivation to do it 
in the first place. The same mainte­
nance strategy is applied to our sta­
tions. And the reasoning behind 
the strategy is simple: graffiti has 
an adverse effect on ridership. 

SR: Looking ahead, how does 
San Diego intend to further expand 
and improve its light rail network, 
and is there a general policy or 
philosophy with respect to limiting 
the use of private vehicles? 

Senator Mills: The money to 
double the size of our light rail sys­
tem is already available. We re­
cently ordered 751ight rail vehicles 
from Duewag corporation with a 
value of $120 million to serve the 
first of our planned extensions. We 
will be expanding the system to the 
north , and building another line to 
the east. We expect that the system 
will grow at a faster rate over the 
next ten years than it has over the 
last ten. And I imagine we will find 
funding to continue expanding the 
system thereafter. 

At present there is no general 
policy or philosophy with respect 
to limiting the use of private vehi­
cles. That is in the works, however, 
- the air pollution control board, 
which was created by state law, is 
considering that and is expected to 
produce policies that will limit the 
use of private vehicles. In particu­
lar it will place penalties on em­
ployers who fail to reduce the 
number of employees who come to 
work in private vehicles. • 
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processes. In the case of neuronal 
networks, this is done at the level 
of so-called damp hardware, i.e. 
neuronal computing structures are 
imitated. Fuzzy control operates at 
a somewhat more abstract cogni­
tive level. 

A Vast Range of Applications 

Assessments of the potential of 
fuzzy control vary between eu­
rhnria and extreme reservation. 

ter assessment is in keeping 
wan the state of the art. To be 
sure, many automation problems 
can be satisfactorily solved using 
conventional techniques and, apart 

. . . Specified 
data 

Fuzzy 
concept 

Sharp 
concept 

40 50 60 

from prestige or marketing slo­
gans , provide no technological ar­
guments in favor of the use of fuzzy 
control. There are , however, a 
wide range of problems where , al­
though a solution can be achieved 
by conventional methods , fuzzy 
logic could provide real advan­
tages. This occurs typically in cases 
where there is no accurate or sim­
ple mathematical model of the sys­
tem in question, because it is pre­
cisely such a model that forms the 
basis for conventional solutions. 
Fuzzy control , however, does not 
need such a model, but simulates 
the strategy of the person control-

70 ·80 
Speed ---7 

Fig.1 
There are three ways of 
controlling a train: 
manually, with 
conventional automation, 
and with fuzzy control 

Fig.2 
Average speed as a clearly 
defined concept and as 
represented in fuzzy control 
(yellow, with fluid 
transitions) 

ling a process. Thus, in such cases , 
this is the only method that makes 
it possible to arrive at satisfactory 
solutions. Typical applications are 
industrial processes such as cement 

production, sewage treatment , or 
general environmental engineer­
ing, where efficient models are fre­
quently not available. In the 
medium and long term, these will 
definitely become important fields 
of application for fuzzy control. 

On a case-by-case basis, how­
ever, fuzzy control can also be seen 
as being in direct competition with 
conventional solutions, as in the 
previously described control sys­
tem for subway trains. This is an 
area where fuzzy control frequent­
ly provides advantages as regards 
the quality of the solution or as re­
gards development or implementa­
tion costs. For instance, fuzzy con­
trol enables: 
• trains to travel in a smooth and 
energy-saving manner; 
• washing machines to make do 
with 4-bit processors, whereas con­
ventional controls require 8-bit 
processors; 
• air conditioning systems to be 
built with very great flexibility 
in comparatively short periods, 
whereas conventional controls 
have to be extensively adapted to 
varying conditions. 

A review conducted in the 
Spring of 1989 revealed over 120 
successful industrial applications of 
fuzzy control , with the overwhelm­
ing majority being in Japan. To 
date, accurate, comprehensive 
studies of fuzzy control's market 
potential have either not been 
made or are not publicly available. 
Two figures , however, provide an 
indication of how fuzzy control is 
rated by Japanese companies: for 
the mid- '90s Omron expects to 
achieve over $1 billion worth of 
sales annually with fuzzy-control 
products and , in the next few 
years , Panasonic is aiming for the 
"fuzzification " of some 200 prod­
ucts. 

Needed: Parameters for Fuzzy 
Applications 

In spite of the apparent success 
of fuzzy control systems, the tech-
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nology has shortcomings that still 
represent an obstacle to its full ex­
ploitation. For example, although 
there is a great deal of experience 
as regards those applications in 
which fuzzy control can be put to 
good use , there is still no estab­
lished system that makes it possi­
ble , on the basis of problem­
specific characteristics, to decide 
whether, in which version, and 
with what benefits fuzzy control 
should be employed. 

The development of an aU-em­
bracing theory of fuzzy control 
and , in particular, of a resultant , 
systematic method of development 
is still a long way from completion. 
This is also expressed in the fact 
that software-development envi­
ronments for the implementa­
tion of fuzzy-control applications 
scarcely exceed simple, graphics­
oriented rule editors and compil­
ers . While there are specific soft­
ware- or hardware-supported rou­
tine environments for fuzzy-con­
trol applications providing satisfac­
tory performance and an improv­
ing price/performance ratio, the 
economical application of fuzzy 
control in a broader range of appli­
cations depends on the further de­
velopment of systematic design 
techniques and efficient develop­
ment tools. 

In addition, a shortage of per­
sonnel trained in this technology is 
one of the principal obstacles to 
the broad-based use of fuzzy con­
trol in Germany. So far, the sub­
ject has hardly been touched in 
German universities . There are 
only very few experts , and the 
available literature provides en­
gineers and information scientists 
with very little assistance as far as 
the design and implementation of 
fuzzy-control applications is con­
cerned. Thus, overall , there are 
three areas in which progress is still 
required: 

• systematic design and imple­
mentation methods, 
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• powerful software tools , and 
• improved training. 

Worldwide R&D Activities 

Around the world , but particu­
larly in Japan, intense work is be­
ing conducted on overcoming the 
above-outlined shortcomings. One 
of the centers of Japanese activity 
is the LIFE Institute (Laboratory 
for International Fuzzy Engineer­
ing Research) in Yokohama. Mod­
eled after the Fifth Generation In­
stitute, the LIFE Institute not only 
enjoys an annual budget of $10 mil­
lion but also has many industrial 
member companies, including Ca-

Siemens 
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non, Fuji Heavy, Hitachi , Mat­
sushita Electric, Mitsubishi Elec­
tric, IBM Japan, and Thomson Ja­
pan. In addition, several univer­
sities as well as companies such as 
Omron (according to its own infor­
mation , this company has some 50 
employees working on fuzzy con­
trol) are pursuing their own, exten­
sive activities in this area. While 
Japanese companies have so far 
largely restricted themselves to 
their domestic market, they are 

now attempting to gain a foothold 
in the European market with 
fuzzy-control products. 

In addition to Japan, India and 
China are very actively engaged in 
fuzzy research , as is demonstrated 
by their representation in the In­
ternational Fuzzy Set Association. 
While there are fewer than 500 
members each for Europe and the 
U.S. , China and India each have 
2000 members . 

In the U.S., the aerospace indus­
try - chiefly Boeing and NASA -
has shown the greatest interest in 
the field of fuzzy control. Current­
ly, the most important manufac-

Siemens 
Company 

University/ 
Polytechnic 

turer of fuzzy-control hardware 
and software outside Japan is To­
gai Infralogic, Inc., a software 
company whose main products are 
a development system for efficient 
fuzzy-control applications (based 
on standard microprocessors) , as 
well as special fuzzy accelerator 
boards. 

In Germany, as in the rest of 
Europe, fuzzy control has so far 
been pursued predominantly as a 
theoretical discipline. To date , 

however, it has rarely been trans­
lated into applications. A notable 
exception to this is described in the 
adjoining article . However, many 
companies are now beginning to 
examine fuzzy control - in most 
cases with small-scale evaluation 
projects. 

Fuzzy Control at Siemens 

Fuzzy control can be used ad­
vantageously in many areas of 

Fig.3 
Task Force Fuzzy 
works closely with internal 
and external partners 

Specialist 
company 

automation in which Siemens is in­
volved. These include knowledge­
based systems, control engineer­
ing, electronic circuits , and corre­
sponding fields of application. 

The foundations for work in 
these and other areas were laid by 
Task Force Fuzzy, which was PS­

tablished in January 199 
Siemens' Central Research "ud 
Development Department (Fig. 3) . 
Task Force Fuzzy's ten members are 
pursuing two essential objectives: 



first , in collaboration with the com­
pany's product divisions , the Task 
Force is pursuing pilot applications 
capable of rapid development. Sec­
ondly, in-house improvements to 
methods and tools for fuzzy control 
are being examined. These are 
aimed at the systematic support of 
the entire life cycle of a fuzzy-con­
trol application from initial design 
through acquisition of the knowl­
edge base to startup and optimiza­
tion. 

Task Force Fuzzy is working 
with application experts inside the 
company, as well as with numerous 
external partners. Projects have 
been designed in such a way that 
pilot applications are implemented 
by teams, with the Task Force pro­
viding the expertise in fuzzy con­
trol and the respective product di-

n supplying the specific appli­
l-udOn expertise . 

Other internal partners include 
hardware and sensor technology 
experts from the central microelec­
tronics-development department 
and from the semiconductors prod­
uct division. The resulting syner­
gies are expected to lead to deci­
sive competitive advantages. 

Outside the company, Task 
Force Fuzzy is working with man­
ufacturers of fuzzy-control hard­
ware and software. For example, 
joint application projects are 
underway with , among others, To­
gai lnfralogic. On the research 
side, there is close cooperation 
with the Institute for Corporate 
Research at RWTH (a German 
technical university) as well as with 
other German and international 
research institutes. Thus, in overall 
terms, Task Force Fuzzy has been 
established as a Corporate Center 
of Competence. The Task Force 
r- ~rates as the interface between 

nal partners and Siemens' 
product divisions and thus , in addi­
tion to its own personnel , supports 
more extensive R&D activities re­
lating to fuzzy control. • 

Develofing Fuzzy 
Contro Technology 
in Europe 
Hans-Jiirgen Zimmermann 

In 1965 the first publication on 
fuzzy sets appeared in the U.S. , 
and in the mid- '70s the first fuzzy 
controller wa introduced in 
Europe. Yet even by the end of the 
'70s, Japan displayed no apparent 
interest in fuzzy control technolo­
gy. Japan's massive advance in a 
broad range of fuzzy products thus 
requires a 4-point explanation: 
• The seeds of this technology 
were randomly dispersed through­
out the world. In the U.S. they 
took root in information science, 
an attractive, but not very applica­
tion-friendly area. Similarly, in 
Europe they took root above all in 
the field of operations research. 
But in Japan, control engineers 
seized on the new approach and 
quickly used it to solve concrete 
problems. 
• The close relationships between 
universities and industry in Japan 
promote the rapid conversion of 
ideas into products: university 
laboratories are financed to a large 
extent by industry. Thus knowl­
edge gained in the course of R&D 
activities is quickly brought to 
market. 
• The strategic thinking of the 
Japanese, which is geared to long­
term goals, creates a solid basis for 
the rapid implementation of in­
novative ideas. 
• The technology-friendly mental­
ity of Japanese consumers has giv-

Prof. Hans-Jiirgen Zimmermann , 
Head of the Institute for 
Operations Research at RWTH 
Aachen, Germany 

'Expert 
System 

Fuzzy 
Control 

en a boost to fuzzy fever in Japan. 
The fact that similar interest has 
developed in Germany as well , at 
least among potential manufactur­
ers , is due in large measure to the 
media. 

The Potential for Fuzzy Products 

The U.S. and Europe are clearly 
out in front as regards scientific 
know-how in this field. This is not 
surprising in view of the heavy en­
gineering bias of the Japanese. 

Fig.1 
The basic structure 
of expert and 
fuzzy control systems 
is very similar: 
the knowledge base and 
inference engine 
form the core; in both 
cases non-numerical data 
must be processed 
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Possible Hardware Platforms for Fuzzy Control 

Conventional Specialized 
hardware hardware 

PC 
Workstations 
Process 
control 
computers 

processors 
Analog 
computers 

Conversely, practical experience -
especially in fuzzy control - is still 
very thin in Europe, where there is 
a distinct shortage of experts. 

The potential fields of applica­
tion for fuzzy control lie predomi­
nantly in highly complex tasks in­
volving large volumes of data. 
Hardware, software, and brain-
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ware , as well as scientific and prac­
tical know-how contribute signifi­
cantly to market opportunities for 
fuzzy products. The range of avail­
able hardware extends from the 
conventional digital computer 
through parallel computers, mi­
crocontrollers and analog or digital 
fuzzy processors to application-

Fig.2 
Fuzzy applications 
extend from PCs 
via parallel processors, 
microcontrollers, and 
special fuzzy processors to 
application-specific fuzzy 
chips (FASICs) 

Fig.3 
Entry of the knowledge 
base for this fuzzy car took 
only two hours 

specific fuzzy chips (FASlCs). 
There is already a wide array of 
software tools for implementing 
fuzzy control systems ; many, how­
ever, have not progressed beyond 
the pilot-version stage. Brainware 
- the generic term for methods , 
theories , and techniques - has so 
far been based on a relatively sim­
ple foundation , some of which was 
laid as early as the '60s. 

Can Europe Challenge Japan? 

Europe's chances of challenging 
Japan can be characterized by the 
following eight points: 

• Japan has a three- to four-year 
lead as regards practical applica­
tions. 

• Japanese experience is concen­
trated on control-related applica­
tions; as regards fuzzy data ana' 
or the use of expert systt. , 
Europe is in front. 

• The scientific base is broader 
and deeper in Europe. 

• Europe and the USA are more 
heavily software-oriented. 
• Japan is entering the world mar­
ket with fuzzified products and fuz­
zy hardware; the USA is concen­
trating more on software. 

• Europe should promote fuzzy 
products and solutions instead of 
fuzzy techniques. 
• The existence of a valuable pool 
of German ideas is confirmed by 
the large number of inquiries to 
RWTH Aachen concerning the pos­
sibility of making fuzzy products. 

• The German fuzzy-control mar­
kets and the world markets are cur­
rently being divided up; the Japa­
nese market is already firmly in 
Japanese hands. Strong American 
competition can be expected as of 
1992. 

To sum up: At present, E 
peans still have a perfectly good 
opportunity to challenge Japan . 
But there is very little time left to 
seize that opportunity. • 


