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UNIVERSITY OF WASHINGTON

Department of Electrical Engineering
Mail Stop FT-10, Seattle, Washington 98195
(206) 543 6990

April 25, 1994

EE400 Project

There are three options for the project for this course. The emulator project will earn a
maximum of fifteen points. The report project can earn a maximum of ten. Innovative

projects, the third option, are open ended.
The project will have a total of ten points associated with it. Thus, high scores on

an emulator project will count as extra credit.
Material on fuzzy systems will be available from Shinhak Lee during his office hours
(9 to 10:30 AM on Mondays and Wednesdays). He will have available

o Proceedings of the First IEEE International Conference on Fuzzy Systems, (FUZZ-
- IEEE), 1992

o Proceedings of the Second IEEE International Conference on Fuzzy Systems, (FUZZ-
IEEE), 199333

e Bezdek & Pal, a volume containing reprints in cla,ssm papers in the application of
fuzzy reasoning to pattern recognition.

o. Marks, a collection of papers on successful applications of neural networks published
in the last few years by IEEE. The volume is not yet in print, but copies of most
of the papers in the book are available.

There are three options .



Emulator Project

Students choosing this topic will emulate a fuzzy system for a topic of their choosing.
Possible applications include fuzzy expert systems, fuzzy control and fuzzy pattern recog-
nition. Students will prepare a written report on their project.

Written and Oral Report

A paper or topic dealing with fuzzy systems will be chosen. The student will write a one
page summary of the paper and give an oral presentation of contents of the paper to the
class. The length of the presentation depends on the number of students chooing this
topic. Fifteen minutes is a good guess. Questions concerning the presentations will be
on the final examination.

Open Ended

Innovative projects not falling into the above categories are welcome.

Proposal

Proposals are to be handed in on May 16, 1994. Consideration will be made that week.
For the written and oral summary of a paper, include the authors, title, publication,
and date of the paper. The written summary is due at the time the oral presentation
is given. Those doing emulations should describe their projects in about one page. The
final report is due Monday, June 6, 1994. Those doing projects that are publishable will
receive a 4.0 in the course.

Robert J. Marks 11

Professor of Electrical Engineering



Paper 2.1

Fuzzy Sets*
L. A. ZapEn

Department of Electrical Engineering and Electronics Research Laboratory,
Universily of California, Berkeley, California

A fuzzy set is a class of objects with a continuum of grades of
membership.GS&h a set i3 characterized by a membership (charac-
teristic) function which—assigns to each object a grade of member-
ship ranging between zero and one. The notions of inclusion, untén,
intersection, complement, relation, convexity, etc., are extended
to such sets, and various properties of these notions in the context
of fuzzy sets are established. In particular, a separation theorem for
convex fuzzy sets is proved without requiring that the fuzzy sets be
disjoint.

1. INTRODUCTION

More often than not, the classes of objects encountered in the real
physical world do not have precisely defined criteria of membership.
For example, the class of animals clearly includes dogs, horses, birds,
ete. as its members, and clearly excludes such objects as rocks, fluids,
plants, etc. However, such objects as starfish, bacteria, etc. have an
ambiguous status with respect to the class of animals. The same kind of
ambiguity arises in the case of a number such as 10 in relation to the
“class” of all real numbers which are much greater than 1.

Clearly, the “class of all real numbers which are much greater than
1,” or “the class of beautiful women,” or *the class of tall men,” do not
constitute clagses or sets in the usual mathematical sense of these terms.
Yet, the fact remains that such imprecisely defined “classes’” play an
important role in human thinking, particularly in the domains of pattern
recognition, communication of information, and abstraction.

The purpose of this note is to explore in a preliminary way some of the
basic properties and implications of a concept which may be of use in
dealing with “classes” of the type cited above. The concept in question
is that of a fuzzy set,' that is, a “class” with a continuum of grades of
membership. As will be seen in the sequel, the notion of a fuzzy set
provides a convenient point of departure for the construction of a con-
ceptual framework which parallels in many respects the framework
used in the case of ordinary sets, but is more general than the latter and,
potentially, may prove to have a much wider scope of applicability,
particularly in the fields of pattern classification and information proc-
essing. Essentially, such a framework provides a natural way of dealing
with problems in which the source of imprecision is the absence of sharply
defined criteria of class membership rather than the presence of random
variables.

We begin the discussion of fuzzy sets with several basic definitions.

I1. DEFINITIONN
Let X he a space of points (objects), with a generic element of X de-
noted by x. Thus, X = {z}.

* This work was supported in part by the Joint Services Electronics Program
(US. Army, U.S. Navy and U.S. Air Force) under Grant No. AF-AFOSR-139-64
and hy the National Science Foundation under Grant GP-2413.

! An' upplication of this concept to the formulation of a class of problems in
puttern classification is described in RAND Memorandum RM-4307-PR, “Ab-
straction and Pattern Classification,”’ by R. Bellman, R. Kalaba and L. A. Zadeh,
October, 1964.

Reprinted with permission from Inform. Control, vol. 8, pp. 338-353, 1965. (Copyright © 1965 by Academic Press, Inc.)
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FUZZY SETS

A fuzzy set (class) A in X is characterized by a membership (charac-
teristic) function f.(z) which associates with each point’ in X a real
number in the interval [0, 1],’ with the value of f,(z) at  representing
the “grade of membership” of z in 4. Thus, the nearer the value of
f.(x) to unity, the higher the grade of membership of z in 4. When 4
is a sel in the ordinary sense of the term, its membership function can
take on only two values 0 and 1, with f,(z) = 1 or 0 according as z
does or does not belong to A. Thus, in this case f.(z) reduces to the
familiar characteristic function of a set A, (When there is a need to
differcntiate between such sets and fuzzy sets, the sets with two-valued
characteristic functions will be referred to as ordinary sets or simply sets.)

Example. Let X be the real line R' and let 4 be a fuzzy set of numbers
which are much greater than 1. Then, one can give a precise, albeit
subjective, characterization of A by specifying f(z) as a function on R'.
Representative values of such a function might be: £,(0) = 0;f.(1) =
fa(8) = 0.01; £4(10) = 0.2; £.(100) = 0.95; f.(500) =

It should be noted that, although the membership function of a fuzzy
get has some resemblance to a probability function when X isa countable
set (or a probability density function when X is a continuum), there are
essential differences hetween these concepts which will become clearer
in the sequel once the rules of combination of membership functions and
their basic properties have been established. In fact, the notion of a
fuzzy set is completely nonstatistical in nature.

We begin with several definitions involving fuzzy sets which are
obvious extensions of the corresponding definitions for ordinary sets.

A luzzy set is empty if and only if its membership function is identically
zero on X,

Two fuzzy sets 4 and’ B are equal, written as A = B, if and only if
falz) = fa(z) for all z in X, (In the sequel, instead of wrmngf (z) =
fs(z) for all z in X, we shall write more simply fa = f#.)

The complement of a fuzzy set 4 is denoted by 4’ and is defined by

f.«l' =1 _f.4 . (1)

As in the case of ordinary sets, (he notion of containment plays a
central role in the case of fuzzy sets. This notion and the related notions
of union and intersection are defined as follows.

Conlainment. 4 is conlained in B {or, equivalently, A is a subset of B,
or 4 is smaller than or equal lo B) if and only if f4 = f». In symbols

ACBeof S fs. (2)

Union, The union of two fuzzy sets A and B with respective member-
ship functions f.(z) and fs(z) is a fuzzy set C, writtenas C = 4 U B,
whose membership function is related to those of 4 and B by

fe(z) = Max [fu(z), fa(2)], zcX (3)

or, in abbreviated form

fe=fav fa. (4)

Note that U has the associative property, that is, 4 U (B U C) =
(4 UB)Uc.

Cominent. A more intuitively appealing way of defining the union is

* More generally, the domain of definition of f,(z) may be restricted to a sub-
set of .\'.

3 In a more general setting, the range of the membership function can be taken
to he a suitable partially ordered set P. For our purposes, it is convenient and
sufficient to restrict the range of f to the unit interval. If the values of f,(z) are
interpreted as truth values, the latter case corresponds to a multivalued -logie
with a4 continuum of truth values in the interval [0, 1],

36
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X
F1c. 1. Illustration of the union and intersection of fuzzy sets in R!

the following: The union of 4 and B is the smallest fuzzy set containing
both A and B. More precisely, if D is any fuzzy set which contains both
A and B, then it also contains the union of 4 and B.

To show that this definition is equivalent to (3), we note, first, that C
as defined by (3) contains both 4 and B, since

Ma‘x [f‘ rfB] .>—_- fA

and

Max (fa,fol 2 f5.
Furthermore, if D is any fuzzy set containing both 4 and B, then
fo Z fa
fo 2 fs

and hence

fo = Max [f4 ,fB] = f.

which implies that ¢ € D. Q.E.D.

The notion of an intersection of fuzzy sets can be defined in an analo-
gous manner, Specifically:

Intersection. The intersection of two fuzzy sets 4 and B with respective
membership functions f,(z) and fa(z) is a fuzzy set (', written as C =
A N B, whose membership function is related to those of 4 and B by

Je(z) = Min [falx), falz)], z€X, (5)

or, in abbreviated form

fc=f.4 Afa- (6)

As in the case of the union, it is casy to show that the intersection of
d and B is the largest fuzzy set which is contained in both 4 and B. As
in the case of ordinary sets, A" and B are disjoint if A ] B is empty.
Note that N, like U, has the associative property.

The intersection and union of two fuzzy sets in R' are illustrated in
Tig. 1. The membership function of the union is comprised of curve seg-
ments 1 and 2; that of the intersection is comprised of segments 3 and 4
(heavy lines).

Comment. Note that the notion of “belonging,” which plays a funda-
mental role in the case of ordinary sets, does not have the same role in
the case of fuzzy sets. Thus, it is not meaningful to speak of a point z
“belonging” to a fuzzy set A except in the trivial sense of f,(z) being
. positive. Less trivially, one can introduce two levelsa and 8 (0 < « < 1,
0 < 8 < 1, a > B) and agree to say that (1) “z belongs to 4" if
fa(z) 2 a; (2) “z does not belong to A” if fu(z) £ 8; and (3) “z has
an indeterminate status relative to A” if 8 < f.(z) < a. This leads to a
three-valued logic (XKleene, 1952) .with three truth values: T
(fa(z) 2 @), F (fa(z) = B),and U (8 < fu(z) < a).
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FUZZY SETS

11I. SOME PROPERTIES OF |J, . AND COMPLEMENTATION

With the operations of union, intersection, and complementation
defined as in (3), (5), and (1), it is easy to extend many of the basic
identities which hold for ordinary sets to fuzzy scts. As examples, we have

AUBRY =4'NE
EA n B;' =4'U gf}ne Morgan’s laws E;g

cNAUB) =(cNAYU(NB) Distributive laws. (9)
cuU4nB) (C'UA)ﬂ(CUB) (10)

These and similar equalities can readily be established by showing
that the corresponding relations for the membership functions of 4, B,
and (' are identities. For example, in the case of (7), we have

1 = Max [fu,fsl = Min {1 = fa,1 = f4} (11)

which can be easily verified to be an identity by testing it for the two
possible cases: f.(z) > fa(z) and f4(2) < fa(2).

Similarly, in the case of (10), the corresponding relation in terms of
Js,Tn,and feis:

Max [fc, Min [f4, fs] = Min [Max [fc, f4], Max [fc, fsll (12)
which can be verified to be an identity by considering the six cases:
Ja(2) > fu(z) > fo(2), fa(2) > fe(z) > fa(z), fo(2) > f4z) > felz),
18(x) > fo(®) > fa(z), felx) > fa(z) > fB(x},fc(x) > fa(z) > Ju(z).

Essentially, fuzzy sets in X constitute a distributive lattice with a 0
and 1 (Birkhoff, 1948).

Il

AN INTERPRETATION FOR U/NIONS AND INTERSECTIONS

In the case of ordinary sets, a set ¢ which is expressed in terms of a
family of sets 4,, ---, 4:, -+, 4, through the connectives U and 1,
can be represented as a network of switches @y, -+ , an, with A: N 4;
and A U 4; corresponding, respectively, to series and parallel combina-
tions of a; and a; . In the case of fuzzy sets, one can give an analogous
interpretation in terms of sieves. Specifically, let fi(z), 7 = 1, -+, n,
denote the value of the membership function of 4; at z. Associate with
fi{z) a sieve S;(x) whose meshes are of size fi(z). Then, fi(x) v f;(z)
and fi(z) A fj(x) correspond, respectively, to parallel and series com-
binations of S:(z) and S;{x), as shown in Fig. 2.

More generally, a well-formed expression involving 4, -+, 4., U,
and M corresponds to a network of sieves Sy(z), + -+, Sa.(z) which can
be found by the conventional synthesis techniques for switching cir-
cuits. As a very simple example,

C = [(Al U Az) n Aa] U 114 (13)

corresponds to the network shown in Fig, 3.

Note that the mesh sizes of the sieves in the network depend on z and
that the network as a whole is equivalent to a single sieve whose meshes
are of size fo(z).

IV. ALGEBRAIC OPERATIONS ON FUZZ'" SETS

In addition to the operations of union and intersection, one can define
a number of other ways of forming combinations of fuzzy sets and re-
lating them to onc another. Among the more important of these are the
following.

Algebraic product. The algebraic product of A and B is denoted by .4 B
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Fi1a. 3. A network of sieves simultating [[fi(z) V fa(z)] A falz)} Vv fi(x)

and is defined in terms of the membership funetions of 4 and B by the
relation

Jaw = Jufu. (14)
Clearly,

ABc ANk (15)

Adgebraic sum.' The algebraic sum of 4 and B is denoted by 4 + B
and is defined hy

fiva = f.l + Ju (16
provided the sutm [, + [, is less than or equal to unity. Thus, unlike
the algebraic product, the algebraic sum is meaningful only when the
condition fi(x) + Julx) £ 1issatisfied for all x,

Absolute difference. The absolute difference of 4 and B is denoted by
|4 — B and is defined by

,/3,4-)1! =ifu = Ju;
Note that in the case of ordinary sets | 4 — B/ reduces to the relative
complement of A N Bin 4 U B,

Convex combination. By a convex combination of two vectors f and ¢
is usually meant a linear combination of f and g of the form
M 4+ (1 = A)g, in which 0 £ A £ 1. This mode of combining f and ¢
can be generalized to fuzzy sets in the following manner.

Let A, B, and A be arbitrary fuzzy sets. ‘The convez combination of
A4, B, and A is denoted by (4, B; A) and is defined by the relation

(4, B; A) = AA + A'B (17)

where A’ is the complement of A. Written out in terms of membership
functions, (17) reads

famn() = fa(@)fa(x) + [1 = falx))lfs(2), z ¢ X, (18)

A basic property of the convex combination of 4, B, and A is expressed
by

AﬂBC(A,B; A)€AUB for all A. (19)

1 The dual of the algebraic produet isthesum A @ B = (A'B')' =4+ B -~ B
(This was pointed out by T. Cover.) Note that for ordinary sets [} and the aige-
braie product are equivalent operations, us ure {J and &.

39

e

- PRI RIS Tt i VS w7 & i o




FUZZY SETS

This property is an immediate consequence of the inequalities
Min [fa(2), fo(@)] £ Ma(z) + (1 = M)fs(z)
< Max [fu(z), fa(2)), z€X (20)

which hold for all A in [0, 1]. It is of interest to observe that, given any
fuzzy set C satisfying A N B © ¢ < 4 U B, one can always find a fuzay
set A such that C = (4, B; A). The membership function of this set is
given by '

_ fe(x) — fa(x)
N(z) = fm, z € X. (21)

Fuzzy relation. The concept of a relation (which is a generalization of
that of a funclion) has a natural extension to fuzzy sets and plays an
important role in the theory of such sets and their applications—just
as it does in the case of ordinary sets. In the sequel, we shall merely de-
fine the notion of a fuzzy relation and touch upon a few related concepts.

Ordinarily, a relation is defined as a set of ordered pairs (Halmos,
1960); e.g., the set of all ordered pairs of real numbers z and y such that
z 2 y. In the context of fuzzy sets, a fuzzy relation in X is a fuzzy set in
the product space X X X. For example, the relation denoted by z >> y,
z,y € R', may be regarded as a fuzzy set 4 in R’, with the membership
function of 4, f.(z, y), having the following (subjective) representative
values: f,(10, 5) = 0; f4(100, 10) = 0.7; f4(100, 1) = 1; ete.

More generally, one can define an n-ary fuzzy relation in X as a fuzzy
set A in the product space X X X X .-+ X X. For such relations, the
membership funetion is of the form fi(zy, -+, z.), where z; € X,
i=1--,n

In the case of binary fuzzy relations, the comnposition of two fuzzy re-
lations A and B isdenoted by Be 4 and isdefined as a fuzzy relation in X
whose membership function is related to those of 4 and B by

Ju a(x, y) = Sup. Min UA(-E) v), fa(e, y)l
Note that the operation of composition has the associative property
Ao (Bo() = (doB)o.

Puzzy sets induced by mappings. lLet T he a mapping from X to a
space Y. Lot B he a fuzzy set in ¥ with membership funetion fu(y).
The inverse mapping 77" induces a fuzzy set A in X whose membership
funetion is defined by

Jater = fuly),  y Y (22)

for all .« in X which are mapped by 7 into y.

Consider now a converse problem in which o1 is a given fuzzy set in X
and T, as hefore, is & mapping from X 10 Y. The question is: What is
the membership function for the fuzzy set B in 17 which is indueced hy
this mapping?

If 7 is not one-one, then an ambiguity arises when 1wo or more dis-
tinet points in X, say .y and &y, with diffevrent grades of membership
in «, are mapped into the same point y in Y, In this case, the question
is: What grade of membership in B should be assigned to y2?

To resolve this winbignity, we agree to assign the larger of the two
grades of membership 10 . More generally, the membership funetion
for /2 will he defined by

Tuly) = Max e 1w fald), yor (23

where T7'(y) is the set of points in X" which are mapped into y hy 7.
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V. CONVEXNITY

As will be seen in the sequel, the notion of convexity can readily be
extended to fuzzy sets in such a way as to preserve many of the prop-
erties which it has in the context of ordinary sets. This notion appears
to be particularly useful in applications involving pattern classification,
optlimization and related problems,

In what follows, we assume for concreteness that X is a real Euclidean
space E".

DeriniTIONS
Convexily. A fuzzy set A is convex if and only if the sets I', defined by

T = {z]fs(z) 2 o (24)

are convex for all « in the interval (0, 1].
An alternative and more direct definition of convexity is the follow-
ing’: 4 is conver if and only if

Jaba + (1 = Nag] 2 Min [f4(21), f4(22)) (25)

for all z, and z, in X and all X in [0, 1]. Note that this definition does not
imply that f,(z) must be a convex function of z. This is illustrated in
Fig. 4 forn = 1.

To show the equivalence between the above definitions note that if 4
is convex in the sense of the first definition and a = f(z;) £ fa(z2),
then z; € T, and Ax; + (1 — M)z € T, by the convexity of T, . Hence

Jaley 4+ (1 = N)zo) 2 a = fa(zy) = Min [fi(21), fa(22)].

Conversely, if A is convex in the sense of the second definition and
a = fi(z1), then T, may be regarded as the set of all points z, for which
fia(xz) 2 fi(zi). In virtue of (25), every point of the form.
My + (1 — M2, 0 £ XS 1, is also in T, and hence T, is a convex
set. Q.E.D.

A basic property of convex fuzzy sets is expressed by the

TuEOREM. If A and B are convex, so ts their inltersection.

Proof: Let ¢ = A N B. Then

Jelhzy + (1 = M)z
= Min [fulAz; + (1 = Naa], folhay + (1 = Mza]).  (26)

Now, since 4 and B are convex

L[myl — M)z} 2 Min [fa(21), fa(22)] 27
fe\zi ot (1 — N)z,] 2 Min [fa(z,), fa(z2)]
and hence
fc[)\:l?l + (1 - )\)1132]
(28)

2 Min [Min [f,(z1), f4(z2)], Min [fs(21), fa(z2)]]

§ This way of expressing convexity was suggested to the writer by his colleague,
E. Berlekamp.
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or equivalently
e\ + (1 = Az

(29)
2 Min {Min [f(@), fa(z)], Min [a(22), fa(2)]]

and thus
felAzy + (1 = XN)zg] 2 Min [fo(2), fe(z)]). Q. E. D. (30)

Boundedness. A fuzzy set A is bounded if and only if the sets T, =
{z|f4(z) = o are bounded for all « > 0; that is, for every @ > 0 there
exists a finite R(«) such that ||z || S R(a) forallzin I'y.

If A is a bounded set, then for each ¢ > 0 then exists a hyperplane H
such that f,(z) £ ¢ for all z on the side of H which does not c¢ontain
the origin. For, consider the set T, = {z|f.(z) 2 ¢. By hypothesis,
this set is contained in a sphere S of radius RB(¢). Lot H be any hyper-
plane supporting 8. Then, all points on the side of H which does not
contain the origin lie outside or on S, and hence for all such points
filz) S e

Lemma, Let A be a bounded fuzzy set and lel Al = Sup, fi(z).
(M will be referred lo as the maximal grade in A.) Then there is at least
one point zy at which M is essentially attained in the sense that, for each
¢ > 0, every spherical neighborhood of z, contains points in the set Q(¢) =
{zfa(z) 2 M — .

Proof.® Consider a nested sequence of bounded sets I'y, Ty, ---,
where Ty = {z|fa(2) 2 M — M/(n + 1)},n = 1,2, --- . Note that
T', is nonempty for all finite n as a consequence of the definition of A
as M = Sup,f«(x). (We assume that M > 0.)

Let z, be an arbitrarily chosen point in T'n, n = 1, 2, --- . Then,
Zi, T2, -+, I8 & sequence of points in a closed bounded set T, . By the
Bolzano-Weierstrass theorem, this sequence must have at least one
limit point, say ¢, in T; . Consequently, every spherical neighborhood
of z, will contain infinitely many points from the sequence z;, z,, -+ -,
and, more particularly, from the subsequence zyii, Zy42, * -+, where
N 2 M/e. Since the points of this subsequence fall within the set Q(e) =
{z|fi(z) 2 M — ¢, the lemma is proved.

Strict and sirong convexity. A fuzzy set A is sirictly conver if the sets
I'y, 0 < @ £ 1 are strictly convex (ihat is, if the midpoint of any two
distinct points in I', lies in the interior of T,). Note that this definition
reduces to that of strict convexity for ordinary sets when A is such a set.

A fuzzy set 4 is strongly convez if, for any two distinct points z; and x, ,
aud any X in the open interval (0, 1)

Saldzy 4+ (1 = Nz > Min [fa(2), fal(z2)].

Note that strong convexity does not imply strict convexity or vice-versa,
Note also that if A and B are hounded, sois their union and intersection.
Siniilarly, if A and B are strictly (strongly) convex, their intersection
is strictly (strongly) convex.

Let A be a convex fuzzy set and let M = Sup, f.(x). If A is bounded,
then, as shown above, either M is attained for some z, say ,, or there
is at least one poini xy at which A/ is essentially attained in the sense
that, for each ¢ > 0, every spherical neighborhood of z, contains points
in the set Q(e¢) = {x| M — fu(z) £ €. In particular, if 4 is strongly
convex and 7, is attained, then z, is unique. Tor, if M = f,(x) and
M = f(x)), with &, = 2, then f(x) > M for z = 0.hzy + 0.5z, ,
which contradicts A/ = Max, f.(z).

More generally, let C(A) be the set of all points in X at which M is
essentially attained. This set will be referred to as the core of A. In the
case of convex fuzzy sets, we can assert the following property of C(A4).

¢ This proof was suggested by A. J. Thomasian.
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THEOREM. [f A is a convezx fuzzy sel, then ils core is a convex set.

Proof: It will suffice to show that if 3/ is essentially attained at z,
and z,, 71 # 1z, then it is also essentially attained at all = of the form
x=)\xo+(1—)\)£1,0§>\§ 1.

To the end, let P be a cylinder of radius e with the line passing through
o and 7, as its axis. Let z," be a point in a sphere of radius ¢ centering
on z, and z;" be a point in a sphere of radius ¢ centering on z, such that
fa(z) 2 M — eand fa(2') = M — e Then, by the convexity of 4,
for any point % on the segment z,'z,’, we have f,(u) = M — e Further-
more, by the convexity of P, all points on 2oz, will lie in P.

Now let z be any point in the segment zs2; . The distance of this point
from the segment z,'z; must be less than or equal to ¢, since zo'z; lies
in P. Consequently, a sphere of radius ¢ centering on z will contain at
least one point of the segment 2,2, and hence will contain at least one
point, say w, at which f.(w) 2 M — e This establishes that M is es-
sentially attained at z and thus proves the theorem.

CoroLLary. If X = E' and A is strongly convez, then the puint af
which M s essentially atlained s unique.

Shadow of a fuzzy sel. Let A be a fuzzy set in E" with membership
function fa(z) = f4(x1, -, Za). [or notational simplicity, the notion
of the shadow (projection) of 4 on a hyperplane H will be defined below
for the special case where H is a coordinate hyperplane, eg.,, H =
e = 0. ‘ :

Specifically, the shadow of A on H = lx |, = 0} is defined to be a
fuzzy sel. Sy(A) in K" with f, () given by

f.s'”(,“(.t) = an(A)(.-r‘l: T ) = SUP o falzy, o0, Za).

Note that this definition is consistent with (23).

When A is a convex fuzzy set, the following property of Sy(A) is an
immediate conscquence of the above definition: If A is a convex fuzzy
set, then its shadow on any hyperplane is also a convex fuzzy set. '

An interesting properiy of the shadows of two convex fuzzy sets is
expressed hy the following implication

S”(A) = A\‘H(B) forall H = 4 = B.

To prove this assertion,? it is sufficient o show that if there exists a
point, say x,, such that f,(x,) # fs(zy), then their exisis a hyperplane
H such that fo,(20®) # feyun(m®), where z,* is the projection of
Ly on H,

Suppose that f4(Ly) = a > fu(xy) = B. Since B is a convex fuzzy set,
the set I'y = {z | fa(z) > B} is convex, and henee there exists a hyper-
plane F supporting Ty and passing through r,. Let H be a hyperplane
orthogonal to F, and let 2" be the projection of xo on H. Then, since
fa(z) £ Bforall z on F, we have fg,,(,,(xo') =< B. On the other hand,
owar(%*) 2 a. Consequently, foym(%0")  fouu(20*), and similarly
for the case where a < 8.

A somewhat more general form of the above assertion is the following:
Let A, but not necessarily B, be a convex fuzzy set, and let Sy(4) =
Sy(B) for all H. Then A = conv B, where conv .8 is the convex hull of
B, that is, the smallest convex set containing B. More generally, Sz(4) =
Su(B) for all H implies conv 4 = conv B.

Separation of conver fuzzy sets. The classical separation theorem for
ordinary convex sets states, in essence, that if 4 and B are disjoint con-
vex sets, then there exists a separating hyperplane H such that A is
on one side of H and B is on the 6ther side. ,

It is natural to inquire if this theorem can be extended to convex fuzzy

T This proof is baged on an iden suggested by (i. Dantzig for the case where
Jdoand B oare ordinary convex sets,
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sets, without requiring that 4 and B be disjoint, since the condition of
disjointness is much too restrictive in the case of fuzzy sets. It turns
out, as will be seen in the sequel, that the answer to this question is in
the affirmative.

As a preliminary, we shall have to make a few definitions. Specifically,
let A and B be two bounded fuzzy sets and let H be a hypersurface in
E" defined by an equation h(z) = 0, with all points for which k(z) = 0
heing on one side of H and all points for which A(z) < 0 being on the
other side.® Let Ky be a number dependent on H such that f4(z) £ K4
on one side of H and fs(z) < Ky on the other side. Let My be Inf K, .
The number Dy = 1 — M, will be called the degree of separation of A
and B by H.

In general, one is concerned not with a given hypersurface H, but
with a family of hypersurfaces {H,}, with X ranging over, say, E™. The
problem, then, is to find a member of this family which realizes the
highest possible degree of separation.

A special case of this problem is one where the H, are hyperplanes in
E", with A ranging over E”, In this case, we define the degree of separa-
bility of A and B by the relation

D=1-M (31)

where

M

with the subscript A omitted for simplicity.

Among the various assertions that can be made concerning D, the
following statement?® is, in effect, an extension of the separation theorem
to convex fuzzy sets.

THEOREM. Let A and B be bounded convex fuzzy sets in E", with mazimal
grades M, and M, , vespectively (M ; = Sup, f4(2), My = Sup. fa(z)].
Let M be the mazimal grade for the intersection A N B (M = Sup, Min-
(f4(2), fa(z)]). Then D =1 — M.

Comment, In plain words, the theorem states that the highest degree
of separation of two convex fuzzy sets 4 and B that can be achieved
with a hyperplane in E" is one minus the maximal grade in the inter-
section 4 N B, This is illustrated in INg. 5 forn = 1,

Proof: It is convenient to consider separately the following two cases:
(1) & = Min (M, , M) and (2) M < NMin (M4, Mz). Note that the
latter case rulesout 4 € Bor B C A.

Case 1. IFor concreteness, assume that A/, < My, sothat M = M, .
Then, by the property of bounded sets already staled there exists a
hyperplane H such that fu(z) £ M for all z on one side of H. On the
other side of H, f.(2) £ M because f,(z) £ M, = M for all z.

It remains to be shown that there do not exist an M’ < M and a
hyperplane H' such that f4(z) < M’ oun one side of H' and fs(z) = M’
on the other side.

This follows at ouce from the following observation. Suppose that
such H' and M’ exist, and assume for concreteness that the core of A
(that is, the set of points at which A/, = M is essentially attained) is
on the plus side of H'. This rules out the possibility that f,(z) < M’
for all z on the plus side of H’, and hence necessitates that f,(z) < M’
for all z on {he minus side of H', and fa(z) < M’ for all z on the plus
side of H'. Consequently, over all z on the plus side of & ’

Sup. Min [f4(2), fa(z)] £ M’

and likewise for all z on the minus side of H’, This implies that, over all

IanIW N ( 32 )

¢ Note that the sets in question have H in common.
¢ This statement is hased on u suggestion of E. Berlekamp.
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Fig. 5. Illustration of the separation theorem for fuzzy sets in E*

z in X, Sup, Min [f«(z), fs(z)] £ M’, which contradicts the assumption
that Sup, Min [f.(z), f2(z)] = M > M’

Case 2. Consider the convex sets I'y = {z|fa(z) > M} and T =
{z | fa(z) > M]}. These sets are nonempty and disjoint, for if they were
not there would be a point, say u, such that f,(u) > M and fp(u) > M,
and hence f,ns(u) > M, which.contradicts the assumption that =
Sup: fans(z).

Since T'y and T are disjoint, by the separation theorem for ordinary
convex sets there exists a hyperplane H such that T'; is on one side of H
(say, the plus side) and T' is on the other side (the minus side). Fur-
thermore, by the definitions of I'y and I's, for all points on the minus
side of H,f4+(z) £ M, and for all points on the plus side of H, fs(z) = M.

Thus, we have shown that there exists a hyperplane H which realizes
1 — M as the degree of separation of 4 and B. The conclusion that a
higher degree of separation of 4 and B cannot be realized follows from
the argument given in Case 1. This concludes the proof of the theorem,

The separation theorem for convex fuzzy sets appears to be of particu-
lar relevance to the problem of pattern discrimination. Its application
to this class of problems as well as to problems of optimization will be
explored in subsequent notes on fuzzy sets and their properties.
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¢ T. Terano, K. Asai & M.Sugeno, Fuzzy Systems Theory and Its
Applications , Academic Press, 1992

® Reference: } -
¢ J.C.Bezdek & S.K. Pal, Fuzzy Models for Pattern Recognition ,
IEEE Press, 1992.
¢ ‘92 FUZZ-IEEE Proceedings

® Course Outline
¢ Crisp sets and fuzzy sets.
¢ Operations on Fuzzy sets
¢ Fuzzy relations.
¢ Fuzzy measures.
¢ Adaptive Fuzzy Processing.
¢ Uncertainty and information.
¢ Applications.

® Students will read and summarize a paper on a contemporary fuzzy topic.

Enrollment will be limited to 30 students.
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Director.o LS. Patent Office, 1899 : -

There’s no future
in believing something can't be done.
The future is in making it happen.
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"The image which is portrayed (of fuzzy control) is the
ability to perform magically well by the new incorporation
of ‘new age’ technologies of fuzzy logic, neural netorks,
expert systems, approoximate reasonong, and self
organization in the dismal failure of traditional techniques.
This is pure, unsupported claptrap which is pretentious and
idolatrous in the extreme, and has no place in the scientific
literature"

Robert Bitmead
Australian National University
IEEE Control Systems
June 1993, p. 7
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"The image which is portrayed (of fuzzy control) is the
ability to perform magically well by the new incorporation
of ‘new age’ technologies of fuzzy logic, neural netorks,
expert systems, approoximate reasonong, and self
organization in the dismal failure of traditional techniques.
This is pure, unsupported claptrap which is pretentious and
idolatrous in the extreme, and has no place in the scientific
literature"

Robert Bitmead
Australian National University
IEEE Control Systems
June 1993, p. 7
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pure, unsupported claptrap which is pretentious
and idolatrous in the extreme, and has no place in
the scientific literature".

Bob Bitmead, "On fuzzy control ... and fuzzy reviewing", IEEE Control
Systems, vol 13, 1n0.3, pp.5-7 (June 1993).

"Is the assessment the reasoned wisdom of age or the
babbling of old fools?"
R.J. Marks II
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"ZADEH’S ORIGINAL PAPER ON FUZZY SETS .. HAS PROBABLY BEEN
REPRODUCED THOUSANDS OF TIMES BY NOW AND HAS APPEARED ON VARIOUS
OCCASIONS IN SEVERAL OTHER COLLECTIONS OF REPRINTS. THE PAPER IS
CLEAR, CONCISE, AND, LIKE ALL REALLY GREAT PAPERS, CONTAINS A
WEALTH OF IDEAS THAT HAVE LEAD TO THE ESTABLISHMENT OF NEW
BRANCHES OF SCIENCE. THE MOST ASTONISHING THING ABOUT THE PAPER IS
THAT ONE CAN GO BACK TO IT, REREAD IT FROM TIME TO TIME, AND FIND
GOOD IDEAS FOR CURRENT RESEARCH THAT TO THIS DAY HAVE NOT BEEN
FULLY EXPLOITED!"

J.C. Bezdek and S.K. Pal, Fuzzy Models for Pattern Recognition, (IEEE Press, New
York, 1992).
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Figure 2.3. Examples from two classes of involutive fuzzy complements: (a)
Sugeno class; (b) Yager class. ‘
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Figure 2.4,
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Equilibria for the Sugeno class of fuzzy complements.
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TABLE 2.2, SOME CLASSES OF FUZZY SET UNIONS AND INTERSECTIONS.

Range of
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ComMPOSTTION
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6 o 1 1 e
2 b cde Com;o/e'te,
v,
Node, D A linear
! o denri
b o 0o or ng
CroL  (always a
o 0 oo . tites
Ll ooe. jattice)
d beae
b e de
R
MR 0 1 o l%
es 1 | TR |
o 0 o 1 O
i ]
‘/ ? o777 :
@nlz' chanoe
M. = 1 I o 1
eo"‘] é? '®) ..l,.
| i
27 ?’)5 o | () - GLB
C"Iangc O é O é
not a
lattice

M?nima(
elements




Go o - 00 0O -9
2@ - ©® 90 90 %0 - 40
- 0 © o 0 9= 0 0
it \}
® <
o o
< T

99 -~ Q9O
0= Q9
-9 0 0Q
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F-’u327 Partial 0ralering—s ive rise
to 'two Fuzzy sets ¥ xe—j_g:

OOm}nating: The c’egree +to u)l'n'CLl

other elements ,Jrecea'e,
Doeminated: The degree to w hie b

other elements Suac_eeof

PDominatTineg CrLas s

= Degree of Dominance over X

QZD(] :
£ X to the Jegreg +b which tl;ey dominate X

=members ©

Agsixa ¢1) :'/“ch'7> f

Y t"te degree
E'xample: w(a b e d e in whie
V£I 7 © | .1 a each element
Mp® © L o .1 O b iore.c.edes oy
05 c7 l § '8 <
6 oo | ©O [
o ll O 'q I ©,

Rov2-
R>[Cj= o.s/a +o.7/b+ v/ e +\/d+o.8/€.
R = 1 /d <& The element d is

=147 / Condominated’

noth; n(g /)pac:eag




plJ

DOMINATED
Repxg® Degree o Dominvance oF X

zmembpers oF X to the ale.g-ree. whieh flvcy
are dominated by X

¢ ) ( ) ‘de re? to w‘n‘ch
= 74 ea ement
/L(Rf:L&] 7 /R 71 succ.::ceeccls X

Uslng relation matrix on i:revious Fag‘g:

Relel: 0.7/a + o.83/c + | [e
l?é[,cj:i/c@ C is (Unc?om;nating’
noé:gqincg svcceeds




T

Given A EK, the J‘Uz%/ - vpper bounedl
:P‘or‘ A
U(R,A)zxﬂ QE_’[X]
€A
Examfyle,'. From matrix, let A= {a, L;j
Ri[ajg 1/a + o.7]c + 1/d+ o.7/e
R?;[.Lj = /b + a/d
N RED&J = o.7/b + 0.9/4 SUCR.:%“:L’E
XeEA /
(F’LUB-)

:Pl)%%y least ula)oer boundy: (Oac set /4)
(1 1t exists)
=0 xe U(RA) >

A7

um‘7ue
gt ) 70 and ugCy) = O

FoR OUR EXAMPLE

/“a(@A)(")PO => x= b or d

Ff‘om f’ /L(R<b,d):o.7
1o /“R (cl,b Y= O
z>EL.U.B.=‘—'~ b

N

Yol
ey




"n3

EX

e

AeX
U(R;K} =0.9d
Clecu")/} FLUB = 0.9d

Hw'! Find Fo6LB

X
A= fa,c3
U(R,A)= o.s/a+ o7/b + \/cl + o.7]e
A (%.y)
3 b d e 7Y
a ] 0.7 / 0.7 —>all >0
Xl b [ .9 O
d @ O t ., G
e o . -9 }
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ExamPle;
X = {smoking , cancer bed burn}ng—l dea-&ﬁ;}

y

s c B D
*|,
S | O O
c 0,9 | o o
IVlR =
z 0.8 o 1 O

MR & o cot ujecl b/ tobacc.o /O.Ll)//
@ & ©




n=2b

Fve=zy

Least Upper [Bound
U(R: X) = 0.8/ s
S is FLUB
S=350, B }
O(R s)= 0.5/s + 0.7/8B
ug(s,8)=0
Mg (B,5): 0.8

= [ Is FLUR

Mo lkes sensel
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Domina%:fng- Class:

RZ[D]= V /St o.1/c + o,7/:3 + I/D

= Aeg—rec off dominance over death

by smole'»ng( ca@ancer, bed bvrn;ng‘ é’de?’t"g

R 0.8/s + 1/B

z[B] "
Dominated Class

Repsg= 1/s + o /cH 6.5/8+« /D

= a‘egrge -L-Aa—{:— .sw:oldng ;S dém'lna‘f:e‘:’d L;y

Smolg'lngi cancer, bed burning % deat ),

Rerey= 1/¢+0.7/D
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3,7. MorpPHISMS

Aerise:  Rex) b aT.T)

then function h: X —>%

e‘momomorlolﬂism

From (X, R) to (T, &) iff
(x,, %) € R => ( hixa, hix)) € Q

V (x,x.) €X

e (X, 4x.) related by R
= (h(x) % hix:) I"elaécd b/ Q

I's &

* FuzzY

R 3 Q foazy
/aR(K.,Xz) ﬁ/aQ (k(x.),h(xz\)
V (x,,x,) X

(ln (x.) h(&,))ahe move strong [/
re /a'f:ed b)’ Qo

Thos, P (&,‘.% ;&a) are foez 17 rela-l:cclb}'g'




"ns

STRONG CRISP HOMOMORPHISM
(x,, x2) € R => (hxn, h(x))eq
V. x.,x. € X and
C/.,)/L)é@,:% (xi,x)e R

Ke =7
V. y.y-e¥ R

Note: h is one !
h need not be one to one

Kj{/ lq can be man7 to one:;
| h(x).- , |

~ x
- : .
"—:>L1()Qis a set of solutnons,




He

Fvz2y STRONG HOMOMORPHISMS o
h im’oases Par‘—t:tuon on X

Y = ’n(a,,,) € YIQ%I@&LL Paw?&.‘m
ye* h(bYe ©

For R on X

2 KR on Y

T

sTRONG HomMoMORPHISM FroM $X,R3 to$Y,Q3
.'aep'j V' blocks of the Part}t;)oh

ax e (3, k)T g (rey )
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E'xam,:le 3.20

X=%a,b,e,d
Xg

X.J,o
o
O o0

L
o 5
o
o

> =

Y= h(d)

<
o
e T
o
o)

Uo0oo

o

Homomor‘ib L\IC: MEP
o = "\(a)f- h(b)
h(e)

T = (0&,8, Y3
__-ayl >
« é
" rbs g F
s i o .
A I 9 ©
= g, Ko )
MK, %2 (yoye) AMUnyz)
(e, o) -5
.2_ y ¥ v
o " 49
o "
Oq (0( Jﬁ) ni v
o («,%) o |V
o e :
o (B B) o Y
0.5 (A, 1) ,V
o (v, =) o
o, & '
o
o) Cy,8) @
O (¥ ¥) o |7
! (6,«) 1
I ] ‘ \/




n8

Sag}ttal Oiagram

F.q3/ 'f:of:

h: =%

This becemes strong 0 f
M (8,¥) =o0.5 (from o.7)
/&(R(X,oc.h o.¢ (Prom 1)
/“R(y,@,): @ (from ©.9)




"9

Homomor,;,'\'lsm (X,R) - CY. Q)
1 £ h 1S comP[etel7l sioeciga[cd and
one -to-one and onto

:?I'SOnaoblphism
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3.8 Fuzzy ReLATION EQUATIONS
Censider Compos'nt"on
R = Poe Q
or
n{”?x i (Pjs 94
Fuzzy ReLATIoN EQUATION S
Given P % Q ) ﬁa‘ﬂd K <= CES)’
Given Q#Q' find P <= much harder
lnalee.d} SQ’U{?;O-/\ is gcnera”/y not uniciue,

Dedine. solutions set-

s(q,R): £ P| PeQ = R3

el

Con do a3 row gt a time
-

=D

P, ",
p= | P| - R:| :
o P4 2
= ry

Pn

FI‘. OQ_: r.

Let sim,ol;fied( solvtion set be densted b)/
sila,r) s ip. | pe@=n3
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. ' 7/
Can we note if a soluvtion is notlaoss: ble?

The _')O;,d"s moust 5a—l:i5;0)/:

max[m'ln (FJ.,an), m;”(Piz:qzk)
. min (Pin,ﬁik)] = Tk
m()éx m"n(f)iéaqoik): ik

For a g"nven I<] the b':gges‘t‘ C]d’k
better 2 ry, , That s

max q. = e T

¢ B makK qd'|<<r’”< &= no solutioy
anmple: | d

[ .27
0.5 | = 0.8

[. PJ; Piz Pis-]o i 0’74

There is ne seluvtion, The maximom
we can get is0)7

4 An inec'ua“t)/'.

Fip © mJax min [P‘d ) c“k]




12 2.

No solution £

max 9., < Ik
;1

This moust hold V¥V A:, Gener-aliz»at'non

f3Ikamax qd" < max ;.

d
Example:
JP L
‘iI J'[/: io.'f
P o |.d O ol
1 4 0.3

O

No solvtion here.

I£ there is no so/utionj

S(Q,R) = &

D
P

L

4

Ol«

>no solvtion

k |

f‘:_:, 0.2 Oo'
ok o 0.1
?o 0, 049

l

NO GOODG?
0,7 < 0.1
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Consider when 3 solotion dees exist s

s(@,r): (plp-@=r3#d

Notation:

l ' - 4

peip if eah clement Ih G o E
| elem\z‘nt inPPz. &
o 'gEp Ve
Define
Cp,t>e Tplp2pt pl
| SCQ,P) Z gé) 3 g maximai/gzlgé S
H(Foss}bl)/ nuomerous)

m}n}mal \

AV
solvtions P=p € S

"565 ,)365@ <,§/ﬁ>é$

Since t‘ker‘e can be nvmeroos

minima| solutions
Cris/o UNI on

A/@/ A
s(R,r)= UJ<p, P
F

A
In 2-D




Example
LS _
é\L o | c"l 45 -' ﬂ”"‘”‘d”ﬁ k?
T T e o >
Q- - o5 .7 .5 J
a1 f 5 (@] ?
a’ 03 04 O"J
Find ﬁ
F.=mm(1,i,1,o)-o
Pz min (.08 i iji )10,8
I:;s"rmn(l).7/.1_71_)30.7
- [ = 0.5
pyzmin (L, 1 .5 1 )=09

Flnd:ng’ m:n:mal SOlot‘lonS /s & beaf’p

A/gor‘tt’ﬂm on fD 99 of text.
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F;nd;ng 5o/ut"non :#or“:

[ Pj Je

maximum soluvtion 900"" P

A .
Py = mino(quu, m)

¢ Tk
&<qjl</rh)-i i

7
VA

/ C]Jl<>PK
Jelse
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F"Ué%)/ IT§- Then Rules

Ex: Fuzzy WasdiNe MAcHINE

# Parameters { Linguigﬁ;c Vamiab’ﬁ”f’
w i = qu;,;‘\ Lcﬁd ’ [nf)c)ﬁ«
cqQ : Cloth Qual't)f

WT = Washi'm% Time e ”C)u‘frfvut“
*L/ﬂguisf}c‘; Variaé/eﬁ:

wL —» L, A, H (L

C@ —r Se 5 (so 4t )
w?‘) e VS/ 3‘,)&/{”

L A
s vS S A
5 A

%31

g‘ht‘, AVérﬂag’e&aH&avn

(Vﬁ’?‘ Shert Short
'y/‘\‘iecf}um// Lang}j

w* Rules (Fu%Zy IM'D[’,c'a'{:ions)

Lf wi iz L. and C€Q is S thea WT is VS
-l 4 LK 64 B L X a4 ée gw £e te 4 S
o € e ee A i i if = 'y it "o

‘i e S < 1 i £ by = o Iy nwo A

8 T} 17 M L] LR [ = i ¢t L A

X 5 L] LY Ix = (X1 L 1 ¥ L“‘

RN ST

—
anteced£%5 canse7ueh +4
Fuzzy Rule Table
WL,




Alternate

OR

OR

OR

r$LwL i s

SR

OR,

ot [we o

(X3 v

I%EJL “

i & et

If [we. “

L1

I I >0~

£y

£¢

gt

g

L1

[X]

Statement of Roleg
L % cq s s]then wr

[X} § '
6 7 5}*&%&#‘1 "

&

&

111

L¥4

e

S

37

[ K]

L

S

j.'

126

j&




1227

We muoust decide what we mean ia}/
f‘zng'uisf:;{; variables:

ouonds

TiME

gy!’%ép

:’::v"'r 9
Notes: o
W ‘j@ ) ¢ ;(\u .
{e e dAre fezw ov’\m:mg‘ Sensor Siton
z. F-’u%%}f me,mioehsld‘nfs set Bly
~€XF@rt

. §
~tvial 7 ervonr

madapféﬁ@m (more v‘*e:cénf“‘lyé

Clothes
Densi+

wEIEHT
VeLuMg

}

o
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How it works:
1. Measvre 'xnputg (WL., S )

(F'U%z;—if'y)

Place } vt Into a vector o

mem g fmp Vaiu&ﬁ

MA" M

e 0075

{
\\ugwwwm
J N %Oﬁzg

x=f LB

Xz loLes «ives MEMBERSHIP

L, O
VE cTOoR A = é Zlg
H o, 75

et

Densit)/




12.9

Ll we is L ¥ cq is S

= min (o, *‘g) = O

2] wi s L§ €CQ is S Ol? WLi-sA’#Ccp is S
-maX[mln (o 2/3) mm(/q /3)] Yy

3] WL s A?CC{)nsSOQ RJL.ISHJ?'CG?ISS
-—maxfmm("/‘f ¥5), min (37‘1 /3 )_] /3

gl we vs H+ % cq s 5
- min (075, 3 ) = “/y

Rules:
1$ (o0l then WT is vs
I [l - S
1 [Y=] o« g A

L] o e e L

Huvestion :

How do we tra nsspor‘m these }\'U%%‘Y
degrees of truvth mto a crvnsf:
deeision

Answer:

De JCU%%?JQ)/

To do J0, we muost s‘/oecép‘:/y u/fxat we mean Ly/




{30

TIME

One me thod of de fozzification:

conseqo ences

1. Cuvt output‘avb tlxe. /Dossilo;‘;t)/
off the ﬁornesFonoling’
antecedents

Time to
—= Center of Mass

) - cot’ membership

= [tu, (€)dt
T, =

;f/nc(t)dt
E:Afcn
: /,/" S A°

 Atro d
c




C ot

Maé\}mumqvimw 4 r}@mblﬁ"ﬁg

o

Ap=ArEn oF prH TRIANGLE

59‘?— cou b
- i
f“’%p A
¥

4
w5 A e
F
b 24 o L=z 2G-BIA
(-6
ARER OF ToP TRIANGLE = + b (1-48)
| = (1-8)°A
ﬂ L
ARER OF TRAPEZOID = E_g”(ﬁ",@) 1A

[ =14 28-2] A% A(2-0)A

Thes ﬁ;f&/a (@}J
2 mmf“/ "z)dz
f z My () c o= f‘;z,a ()dz = Ap <
S ul(zyd=
| Mp ‘5(5402}%@;
Thus 3 -5-" By (Bp=2) Ap Cp
z =

g
= 8, (B,~2)A, nlr A,

B’\
"Mete g




fwf@g:};g % o= A

fp= A ¥ p

ﬁipx@g‘ﬁ

i

s Fpoe(2Be)

=2 Z = = @ngM@pE
i
E.%:&mf/‘i{‘?ﬁ:ﬁ

S S—

TERIANCLES
OMLY
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50mmar~)r :
‘ ﬁuzzi%‘f the ?ﬁf’“t5/ x,Y
r/“f),(")‘w
K et /a,%(”) - i
: A
[ A4, 00
- Mely)
A8.lr) |7 Ae
}; 43")(}/},

Evalvate antecedents of ﬁuga?
if-then rvles:

e A, and B, then Cp
e
ﬁnfec.c:cfeﬂt‘

This carresraohds to a cartesian
Fmduaﬁ‘.‘

/M”/%f"b/afﬁ = By

) Y

elements of//uy’/z(;

COMPOSITION
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(

Q@ﬁu@g—iﬁy
Cut m&méeﬁwgﬁx}/} fwmm;}@mﬁ/ f‘ﬁ”’é {%)/ é},?’ /gﬁ
Call £hen /fp(%é P
Find @z:.@wr»@gfim:/mg @ﬁ?ﬁé’iv“éﬁ’fi‘f‘ ot mass:
#* Ceneral:

z/z

ol (= ?M‘

Aﬁ ,:.{g?w gﬁéﬁ‘? ﬁf:ig ‘:"{‘f(’&f’@’i%f’f)}d

:é; i ”'w ’f —
= ﬂ%fn(:?‘ Ao } A £

# For )é"‘}effw%t’gé’i,é@jf @?U&ﬂe’y fsfveﬂ«i’ifi’ﬂg %ﬁ“y‘iq)@%;ﬁgjg@g !

- ‘ ﬁ {",‘f/j‘;n{/;f;’?_”*ﬁ/g%}\}
g e

{

\ | (
“ , A ‘
// m\\ P //\ ) s '\\\ /d\\\
//’;}{\ "“N.\ S “}‘\'\W \'«\%\
e, e e ™ ~
/ / ‘M‘)&/ S S .
T s . ~_
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VARIATIONS .
@) Evalvate antecedent F@sgibiﬁty

u;fsmg- Fnoduc;f
/2 ® /Mﬁn(x/)/asﬂ(y‘) = /«gﬁ
z>/z;;/&‘g

:ﬂﬁ*ﬁea{f @3@




1 35~

(bYy VsINve WEITGHTS (NSTE D oF
IN DEFU 21 FICATION

ot

o0 TS

/QF’{K //péx>
- /Z%l" {f\ /aﬁ(’)r

/

e
/
\(

g:,/gp
) > b
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[ et f 2l (2 Jd=

/
Z f/%g@)a%; A

. i‘

/ \ e e

/ = 2 /@
Z.p Hp C 5
= = Wthfwwfwa?w s Az ys |
8 = AL 7
Rl S o
gﬁgﬂ&}c@il o®S e :
’%”Avf” T Cpzpl
N2 & —
e N
B > I@p
F
where y
. P f”%f@
3= _ -
/ = Lp
r
2
) /’/ )
?ﬁé{z ]iz‘%—é /i/ngb Tﬁ%ﬁ fquﬁ
-2, B = "W@ g ;i




For e?xéwwaé’ea. o n ﬁ,ifﬁg




/:%é

Targezt T :fzc,k}mgv

loy«abiem: Ad ivs € azfmu%:lh "% eféva'{t}@m + o
Po}mt at ﬁarge"t -

S
, ra
Controf in p ots
o Ele Ua‘ﬁaom ' o
T N AR iR, e 3
“ - MM__,,_W/M) (8ot}

Ar}g/ﬁé } Oout P ot
" Vk:an vlar
velse i')/

Mote: Two S&P@V&“ﬁ:@ controllers contro|

. { - I .
azimoth H @;&:V@’fji@ﬂ, Their architecture

will be identical.

<j€{“§: vt ﬁé@{&/}/ 1\}

Target +trackings system
arg = g =) .
3 e 3 e

(er e, ey,
L

ek o 1 Vi TP
Mwwfﬁmm.w,m,&[f;@mﬁ%} éﬁ'} e @. Contro § & - e %ﬁ:ﬁg&“j

“Ta rge‘%:

Position

| ?;f at yﬁa r wé | ,Mwwwﬂ}

Fosition

o i
S

2!
‘Aala/@f;;w—z, ﬁi"w%:zf/ ,ﬁ}/é"ﬁ“@mz ﬁ:}w

Pacini et B o | :}
{ = Mg”e“zf /v a!e—; 1 s
' -’




V-1

LN MN SN ZE SP MP LP

LN | LN | LN | N LN | MN | SN | ZE

MN | LN | LN | LN | MN | SN | ZE | sP

SN'| LN | LN § MN | SN | ZE | SP | MP

e « ZE | LN | MN | SN | ZE | SP | MP | LP
SP | MN MP | LP | LP

MP | SN LP LP LP

kP | ZE| SP i mMP ] LP ] LP LP LP

ex = ZE crosssection

1273




To%

M

Contf«@}gﬁ"@” W{H B:’)@L ﬁg)@%&_/y’
i’“u%%}/ Sets f;jgg,c{

»‘?
\ A Vs
: %‘& W%@ z"; %& ﬁ"\\' 5
W

In certain software ;s‘ f:am;fm/dr‘@
vniverse of discoorse i5 Lixed.
Yar Domain must be scaled +o it

Fozezi pé}d‘luﬁzlf;ﬂﬂ @%ﬁmﬁfeﬁ
t—> (o0 0 .7.7 © O

bl p (o v+ 0o o o oo

3.8 e (Mrzi'x o T o TG, S I O

o

E’xwmﬁ le {:“U%%_g, 'Efmjg/,;a’;:?%} ol
=4

| f - FMP oand & = Say and ‘@/k,,.g:

i<
th en E/K = S P

Note : Three J;m@wzk; e f f‘a%i@

&£
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5@70«%%‘&3 ff&zj_‘
ﬂ!f M@,méﬁwgﬁ.;f

T, Same

C,h =2 centro

4 re g

£Vﬂ&%}qﬁs bhave

y AFx A
ids «F e

o= ﬁcﬁﬂ%rﬁﬁﬁéﬁ

4]

¥

{i&i =

A

of

= d Hge

shape, F(x)
| ‘55(%}

hdd *

Ao 5&52’.

DEN
— “DENTSp

S~

;
< Ewreow
’Jééfff ' g“
mpots v

fy) 1 M/‘“é’:ﬁ)@ f’: {? e

A




el SNE
y .- att b
/)&ragjﬁf’ .,//)Wﬁg&
T i
w £
I 8By
X.\agé} M’d !Tl JMMYW,,,,;E - P
3 b no 0
{w gd&‘: o p &
‘4\0 W N ﬁ‘i o B
T” ad = 4 s 2, v
W e e S B
_ z4 " 2
e F | :
LN AT (= R
p L ——
é WE?;W ?«' S N o i‘ . T
onan T 4]
' T I | <
. A
° T
° }
’ o &
: L
. A e | 8
é,@.mmw Sk B F
v /
v /
G e s S
Z!i«ji,‘ 5 W;%WWWWW el E:l f’{% oy iﬁ [3’ A P P
" - I f s ‘o

§ P o . ié_ ot . .
N % jgf !‘Q‘p _wgﬁgfffﬁ:@d

Mote: This is a/&ewmaé@
5/0@&‘ of defoesibication.

There s noscombinatioy
oR

of anticedents for a
a comwmon Copns€ e nt -




O

Obvioos Ef]f»/?ﬂﬁff@ﬂ +o

- cot members A}p )fyﬁcf“}@ﬁ’}w@;

— f(x}m (; 3 /"me/)ﬂ {:Mm)

~ Using Single Fix)

(trade less ﬁfa&?a@? Lor more %‘;‘me)




i ¥

AN f/%% %%
/X ?/Z’ff/ O\

£
L]

Nete: Most /igﬁig are zeros ¥

fﬁ C;g_ W \ )
A,ﬁdume M@x:mdf GU*@'W?& migi tw e
W}Lk»‘wéﬁ’&f‘«a !mf FJuonctions

o=
Given @f“;} jaéﬁd ot o e . F@ﬁ 2 fmw"ﬁg‘i{{:w
i é ‘ vl me M e WM{@?{@M*@
W W2l B Cpl v, < Cau
ey s

On | Y é?ﬂg‘L) {/W?i } ante cedents il

gﬂ"w'e;, e Ner were o on Er?“s%p“ﬁ:“a@m o

vewnt . %
émﬂmﬁ? Eﬂ"i‘i’li Oméé/;
' 5

T ot T e PO
é@w - , / o @%&% Wg:% 3‘)

v 1A ) ‘é?t%' i N E
, 3 | MM L AR
e =4O hfi”%‘} T 8, T
e .. (:%’ + 4 T j;ﬁ! M Lﬂ“““i%% ‘ i P
. e ! ‘15 K
{;ﬁ At L Tt L (N}M:; .
P - [ “‘J: b
e g MM ce ] g
- 70 I il
o (=)

:«;;é ;’; irw | -
[ s e

— e}

N [V T I T IO 4 - /3

%M
iz::
§?i
F
K
|
E
!
Lo
A4

L . griner LT 1L
V%ﬁ“% o f{}'\} A T N

L riiini

Note: ] ; ‘
Front end : Eind fV? = ef:@wwezsioamﬁl wgg‘ C s
Bacle end: mateh 7'5:} %@ P s

In genera {, for V vari ables in Q‘M%@aﬁé@%ﬁ;

2
v .
2 mins are reqvi red,




ﬁdgﬁékng 71 €.7v) éﬁﬁé’“ﬁjﬁ'cip) ﬁwa*ﬁ%aﬁﬁ %fuzzf ﬁffmm%”@é”“&
PROBILEM A _ﬁwé??’ {iasﬂf*w@ 5f§éebm IR Aé’%ag‘mweﬁ

Tn +the ficld tt works It can

we Fine ”Ef“&)ﬁ(ﬁi the 5 stewy Fo m;gé:@? VT W@r\ﬁi
better iven ts F@wﬁ@rmaﬁf@ on red
data f ,ix/ carn we a ke it @fﬁd?%swa@ :’”

we wil Hustrate with ada f%mm ol the input
JQUZ{?/ M@m%@f%%?? :pf)ﬁ&f je iy

Loles - 1£ - ﬁf; and ,@m P t hen g?

Agﬁum&’ M)é@wf' m@mgy@f“%fﬁv@ ;‘?«mﬁ@ %ﬁm%ﬂ‘“'

//\\

N &
N4
Y
w/<\\
Py "i/
ﬁ\‘ %&w@jﬂ%

i & D S
24, 2 A
¢ f J .
Bgﬁﬁ’ﬁj @m }:;éw *@f‘ﬁ%@ﬁﬁ§ - et e /it M
&d}w (jrg Apﬁlﬁjwp@ ?f f]zghw A g
p@waéammﬂﬁﬁ@: ) .
VP I- }

g
folm y«mswa’} ey \ &=

iif‘“—"iff @ii%ﬁﬂ@“ mj& j{w%:ﬁ/ &,y,:cm%waéf@w oe

z(e, e )
Jesired (»ﬁf@.wg@«é};} m}éfmfg 7S
£ {%ﬁf@% )
Error:
Ele,é) (”ﬁg{@,g@}w t(e @\)

Note +that Z (M@g thos E) is a

fonction of the s :}% Als.

ﬁro@ lem: ) ok < 5 ;% A fﬁg sve bl +h=t
=

ts o minaimi zed,




A 2-D EHU;’?”&:@&?*&?@%

143

A

wError Sur f&‘ ce.
e

MMM gy

A

&
) { .
:% & ﬁmW‘sgﬁﬁf G;‘? .ﬁ*%ﬁéﬁb""fi‘é‘a ”&“@ﬁéﬁﬂi

?uéﬁ to
;532@@3 4 minimuom, We &%@@SQ
éﬁé@ﬁﬁﬁ%% descent’
A . < vrrent va ;U{e
| m 5 Y Lyt !
'%521”’*’ [ 344t 7Y
= i

$E
A" A~ 54

4
: . sE
R @Yg“””?“ .C‘;“ﬁv ggk
AN

ﬂﬁiﬁfgp s1Z e

f%ﬁ%pﬁﬁﬁ descent- vsed in M@J@wﬂ%h
&Ké&&ﬁ}&/@ “ﬁ.gf?@w% @%i‘fﬁ%}@ +ive @P"”&t'ﬁﬁfﬁw
él@ »ﬁr@?ﬂiﬁg & nn'is.

<ET
M Y e PN
Q‘f; How do we j;ﬁ;mgjg ZA s and
Ed

Af: ggthgr« bgf@mfatipy\@/oag“a’%f@ﬁ‘




14

s

‘aﬁ — = T}?ﬂ

LE.

&

(8]

ﬁ?miil@r“ Ulpdﬁiﬁ’t@ raat= § 4 é}e g‘"}g/@zm j@@f /fiﬁ ff;

Alsol

We can Ufgﬁﬁﬁ

. ¥
S 5

?
ﬁmg

- @w‘t‘?a@xﬁ“ 7 e W é&r‘g%ip ;,ﬁeu m@fﬁj‘;m ¥1 .S

~ if - th

&« ¥y

V‘Ul%‘f‘lﬁ’




144

et
2.
I e
E=%(2Z-¢t)
8E 5 Z
scn (Z2-t) 2.,
— E:A /ﬂ éifg ﬁ
= mwwwm o oo
Z?}/{%Pf%f:;
owty fbn is & Lonction of a,
% % o/@
z’gﬁ? zc,
. A 5"“(:";34
é%, ZpBsAp Seh "Agf?fp Aals
55p = (=3 BpAp)
A Zp Bp A (cp-cp)
= T . 2 com€
(=338 A8) ﬁg')vmm?
'é‘:ﬁﬁ o=
= ol on
//ﬂlmé:jf Ff\{)&jé)ﬂ, a r"ﬁi?ﬁl Ant
- ,M P, o o (0
Kéfﬁ - /%;‘;{Q;’}///é{ﬂ% (:-.}
%éﬁ““ f"’ } é':f{f’(é}
5C ”/@t{mké, % C,

Lee A(xy= (1- ME)&
and e =, Con
enter: A(SFa)

7@%02’%

megjw e é? L)&’g
g3, (Z-t) 6@ *(Z- %}AM $By e

e £z or (& tnte)

A =a 8. A2(c ‘""C’i”‘\w%
(o0 g | )
(= BpAs)T )

X

f

A



119 2

ﬁV‘QM&"ﬁ”EMS

W’“‘WV ey

v .
Vi o =5 Z2la &
ij_«»g Composition | _. g,q,?/

T 1 1o

e

\ ﬂﬁﬁu%z:;ﬁ}/

!
=

Z

Poackpropsate




lee's Toterial

131

Basic Conﬁ}guraﬁon o ofuaz:a«/y /og«-;c; contre [[er

\ l(rzaw'/&zi{ &
f“ base g }“\WWMM '
-

M} Fozzification ; 19¢C;$30n { |
/“T')'ch,aﬂf . g "Z:“k‘ﬂ@"‘ ﬁeﬂzzzfﬂzﬁg“
. glﬁ ;‘
N & #4E L "8 |
r(’.on*&e«o”&c@
Proce s s System
Ou Ezia bt ):*)m &“{a#f‘:’sf) cfc»ﬂ*{rr*gf
Proces s

l<nowgeofge é)éﬁiﬁfﬁl

- de »ﬁfne:, r"o/eSJ

*“iheﬂméewsét'/a }"Uac:’é’:‘}mns
<f"}¢'2”&x panrt é;m) gf\f’/oerﬁ;s

~contral pg [ ¢ <y

~onyvevses of discourses

7

&

Where, do we ge~fr BOr rules

l gxfcwtg Experience }‘5 Control £"g‘ /<’4mu/edg~e,
2. s O0perator Coantrol Actions
3 Fozey Model of A Process
4, Legrne
(Sooeno s Lozzy car <an é{i J
trqined +e /oawA fv/ }fjsﬁ/aﬁ




/:uz—.&j Avithwitic

F:UE;-E—/ Numéem

/é(»(_aﬁ"ﬁ near 5 ) (x)

iéec:a/// Conve lotion

/5*/&": 7

,@j%%i&%ﬁmﬁ ®Brand

I
p o ‘
Al =)o e (5) (x5 ) s

EogE 2y oMol T T OA

A (x) = max "’”;” /5("§V<z<x“§j

“T“‘,.?,Mﬁ. m‘iﬂ.gtig_;mw




. gmw T -JMWWZ M?‘““”’;/é( ﬁm‘
o2 3 4y & ¢
s
S
]
}
/
) by i
5 X“‘.ﬁ 5. 2 Lf g I § é é
%@ Fo - Y & K-t < ¢ = 4

N@éxgn /j%w(@!}mgh 1t wo “ﬁ“wi@wégyjﬁ?w

;ﬁyﬁaﬁ’}@n_s f‘@ﬁw!fﬁg In & ﬁ”WEﬁWgéxjw&m

#ur& etion.




MoV e g@m @&f*‘@g

gy (2= V @@,(M/WU

= X+

4 {/A{M /‘\/Mgigwxﬁj

Mo gérifaiaﬁ tion

vo, o(2)= V| e, (VA g (5 )]
< P A g:x?/"‘&‘?’/ A /7 /

=V /MAQXEA/MEg{%?
For M?ﬁf@:q%

&/

g (2V= man min_ i (<) g (/%)




: 5

OGO

BDDHHD

101010101810
o

e fufitiw

fintstots)

Eh

i
fomo
i
Sl

QBB
Banogs
R88¢
2R¢

00

¢
&

Qe osanie
oDEoog 5

D
heolvtotuts
o Qe et
FAN

/7
)ué“i.{

=

@
g 7

Note - Can Show

(A+)C = (A-c )+

— I p
N — T — -
e

ﬁw&‘%; @f?@#‘”’aé;@ﬁg

R-C
A

o




26 INTRODUCTION TO FUZZY ARITHMETIC
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Figure 1.12 Multiplication of two fuzzy numbers (Example 1.9).

and

a= —az(a)/Z +5/2.
Hence

Ag=la+ 2, —2a+ 5]
Using (1.44) we also have

a= bl(a)/z —3/2 and a= —bz(a) + 6. Hence
By=[2a+ 3, —a+86]

Thus we obtain the multiplication

Ag () Bag=[a+2)(2a+3),(—2a+5)(—a+6)]

=[2d"+7a+ 86, 2a° —17a + 30].
We now have two equations to solve, namely,

20 +7a+6—x=0 (1.46)

and
20’ —17a +30 —x = 0. (1.47)

We will retain only two roots in [0, 1]. For (1.46)
a=(—7+V1+ 8x)/4,

and for (1.47)

a ={17 —V49 + 8x)/4.

Finally,
VY x € R™:

?
|
|
]

The resulti
A () B doe:

EXAMPLE
In N let us

Using (1.41)
thus find thi

A()B=
89,10

0 (0.1/0.1

20 21

We now exar
we showed !
number in R
of the norma
of the norma

A 1. At the left
in (1.42),
# 2. At the rig]
To simplif
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! HA—BD=(0.3 4 0) V(0.7 40.1) v (0.9 A 0.6) ¥ (1 A 1) V

z - (0.5 A 0.8)=1,

‘ HA(—)B(2)=(0.7 A 0) ¥ (0.9 A 0.1) V (1 A 0.6) v (0.5 4 0.8)=0.6,
§ HA—B3) =(0.94 0)V (14 0.1) v (0.5 1 0.6)=0.5,

4; F‘A(—)B(‘l):(l A 0) V(0.5 A01)=0.1,

: HA(—B(5)=(0.5 A 0)=0.

1.0 MULTIPLICATION OF FUZZY NUMBERS

At this point we consider multiplication® in R* and N. Let us consider
two fuzzy numbers A and B in R*. From the level a of presumption,
we can write

Aq () Bq =1, (@7 ()b, @), pla)
= [31<a) . bl(a), az(a) . bz(a)l (1.41)

Multiplication can also be given by

‘v"x, vze R":
Ha(B@ =,V (HAC) N gy, (1.42)

Equations (1.41) and (1.42) are equivalent, and this may be proven
in the same way as was given for addition in the previous section.

, EXAMPLE 1.9

For this example we again use triangular fuzzy numbers because they
are so easy to work with.

VxeR":

HA(x)=0, X=2,

=x—2, 2=x=<3,

=—x/2+5/2, 3 <x=<5,

=0, x>5. (1.43)
pg(x)=0, x=<3,

=x/2—3/2, 3 <x=<35,

=—x+186, b=x<6,

=0, X = 6. (1.44)

For the level ¢ in Figure 1.12 and using (1.43) we have

a= a](a) -2, : (1.45)
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Bg~ = [1/b,(®), 1/b (), bl >0, Va e [0, 1]. (1.50)

Division is not, however, associative or commutative. In connectlon
with this let us study an example in R*. '

EXAMPLE 1.11

We now consider a numerical example. Let us use the triangular
shape shown in Figure 1.13, and let

VY x € R":

uA(x) =0, x <18,
=x/4 — 18/4, 18 = x < 22,
=—x/11 + 3,. 22 = x =33,

=0, x = 33. (1.51)
ug(x) =0, X <35,

=x—35, 5 <x =<8,

=-—x/2 + 4, 6 <x =<8,

=0, x =8 (1.52)

In (1.51), leta=2a,(9/4 —18/4 and  a=-a(%/11 + 3, from
which

Agq = [4a + 18, — 11a + 33).
In (1.52), let a = b,(a) —5 and a= —bZ(O‘)/z + 4, from which
Bg=la+5, —2a+8].
Thus
Ag () Bg=1[4a + 18, —11a + 33} (:) [a + 5, —2a + 8]

<4a +18  —1la+ 33)

2a+8 atb

e

0.0Tﬁ||||11711T1:|r1(|;i1|]Tﬁ||rnl1;

0.0 _ 50 10.0 150 20.0 26.0 300 X

Figure 1.13 Division of two fuzzy numbers (Example 1.11).

We thus

Remark

Note that
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Fuzzy Logic in Control Systems: Fuzzy
Logic Controller—Part I

CHUEN CHIEN LEE, STUDENT MEMBER, IEEE

Abstract —During the past several years, fuzzy control has emerged as
one of the most active and fruitful areas for research in the applications
of fuzzy set theory, especially in the realm of industrial processes, which
do not lend themselves to control by conventional methods because of a
lack of quantitative data regarding the input-output relations. Fuzzy
control is based on fuzzy logic—a logical system which is much closer in
spirit to human thinking and natural language than traditional logical
systems, The fuzzy logic controller (FLC) based on fuzzy logic provides a
means of converting a linguistic control strategy based on expert knowl-
edge into an automatic control strategy. A survey of the FLC is pre-
sented; a general methodology for constructing an FLC and assessing its
performance is described; and problems that need further research are
pointed out. In particular, the exposition includes a discussion of
fuzzification and defuzzification strategies, the derivation of the database
and fuzzy control rules, the definition of fuzzy implication, and an
analysis of fuzzy reasoning mechanisms.

I. INTRODUCTION

URING the past several years, fuzzy control has

emerged as one of the most active and fruitful areas
for research in the application of fuzzy set theory [141].
The pioneering research of Mamdani and his colleagues
on fuzzy control [63]-[66], [S0] was motivated by Zadeh’s
seminal papers on the linguistic approach and system
analysis based on the theory of fuzzy sets [142], [143],
[145], [146]. Recent applications of fuzzy control in water
quality control [127], [35], automatic train operation sys-
tems [135], [136], [139], automatic container crane opera-
tion systems [137]-[139], elevator control [23], nuclear
reactor control [4], [51], automobile transmission control
[40], fuzzy logic controller hardware systems [130], [131],
fuzzy memory devices [107], [108], [120], [128], [129], [133],
and fuzzy computers [132] have pointed a way for an
effective utilization of fuzzy control in the context of
complex ill-defined processes that can be controlled by a
skilled human operator without the knowledge of their
underlying dynamics,

The literature in fuzzy control has been growing rapidly
in recent years, making it difficult to present a compre-
hensive: survey of the wide variety of applications that
have been made. Historically, the important milestones in

Manuscript received May 27, 1988; revised July 1, 1989. This work was
supported in part by NASA grant NCC-2-275 and AFOSR Grant
89-0084.

The author is with the Electronics Research Laboratory, Department
of Electrical Engineering and Computer Sciences, University. of Califor-
nia, Berkeley, CA 94720,

IEEE Log Number 8932013.

-

the development of fuzzy control may be summarized as
shown in table I. It should be stressed, however, the
choice of the milestones is a subjective matter.

Fuzzy logic, which is the logic on which fuzzy control is
based, is much closer in spirit to human thinking and
natural language than the traditional logical systems. Ba-
sically, it provides an effective means of capturing the
approximate, inexact nature of the real world. Viewed in
this perspective, the essential part of the fuzzy logic
controller (FLC) is a set of linguistic control rules related
by the dual concepts of fuzzy implication and the compo-
sitional rule of inference. In essence, then, the FLC
provides an algorithm which can convert the linguistic
control strategy based on expert knowledge into an auto-
matic control strategy. Experience shows that the FLC
yields results superior to those obtained by conventional
control algorithms. In particular, the methodology of the
FLC appears very useful when the processes are too
complex for analysis by conventional quantitative tech-
niques or when the available sources of information are
interpreted qualitatively, inexactly, or uncertainly. Thus
fuzzy logic control may be viewed as a step toward a
rapprochement between conventional precise mathemati-
cal control and human-like decision making, as indicated
by Gupta [30].

However, at present there is no systematic procedure
for the design of an FLC. In this paper we present a
survey of the FLC methodology and point to the problems
which need further research. Our investigation includes
fuzzification and defuzzification strategies, the derivation
of the database and fuzzy control rules, the definition of a
fuzzy implication, and an analysis of fuzzy reasoning
mechanisms.

This paper is. divided into two parts. The analysis of
structural parameters of the FLC is addressed in Part I.
In addition, Part 1 contains five more sections. A brief
summary of some of the relevant concepts in fuzzy set
theory and fuzzy logic is presented in Section II. The
main idea of the FLC is described in Section III, while
Section IV describes the fuzzification strategies. In Sec-
tion V, we discuss the construction of the data base of an
FLC. The rule base in Section VI explains the derivation
of fuzzy control rules and rule-modification techniques.

Part I consists of four sections. Section I is devoted to
the basic aspects of the FLC decision-making logic. Sev-
eral issues including the definitions of a fuzzy implication,

0018-9472 /90 /0300-0404$01.00 ©1990 IEEE
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TABLE 1

{ ' 1972 Zadeh
1973 Zadeh
1974 Mamdani & Assilian
1976 Rutherford et al.
1977 Ostergaard
1977 Willaeys et al.
1979 Komolov er al.
1980 Tong et al.
1980 Fukami, Mizumoto and Tanaka
1983 Hirota and Pedrycz
1983 Takagi and Sugeno
1983 Yasunobu, Miyamoto e al.
1984 Sugeno and Murakami
1985 Kiszka, Gupta et al.
1985 Togai and Watanabe
1986 Yamakawa
1988 Dubois and Prade

A rationale for fuzzy control [145}
Linguistic approach [146} -

Steam engine control [64] .
Analysis of control algorithms (5), (7]
Heat exchanger and cement kiin control [80]
Optimal fuzzy control [121]

Finite automaton [57]

Wastewater treatment process {113]
Fuzzy conditional inference [24]
Probabilistic fuzzy sets (control) [33]
Derivation of fuzzy controi rules [103]
Predictive fuzzy control [135]

Parking control of a model car [97)
Fuzzy system stability [55]

Fuzzy chip [107]

Fuzzy controller hardware system [130]
Approximate reasoning [21]

compositional operators, the interpretations of sentence
connectives “‘and” and “also,” and fuzzy inference mech-
anisms, are investigated. Section II discusses the defuzzi-
fication strategies. Some of the representative applica-
tions of the FLC, from laboratory level to industrial
process control, are briefly reported in Section III. Fi-
nally, we describe some unsolved problems and discuss
further challenges in this field.

II. Fuzzy SeETts AND Fuzzy Loaic

Fg¢ e convenience of the reader, we shall briefly
sumi.. .ze some of the basic concepts of fuzzy set theory
and fuzzy logic which will be needed in this paper. A
more detailed discussion may be found in [141], [41], [42],
[148], [149] and [21].

A. Fuzzy Sets and Terminology

Let U be a collection of objects denoted generically by
{u}, which could be discrete or continuous. U is called the
universe of discourse and u represents the generic ele-
ment of U.

Definition 1: Fuzzy Set: A fuzzy set F in a universe of
discourse U is characterized by a membership function
K which takes values in the interval [0,1] namely, up:
U—[0,1]. A fuzzy set may be viewed as a generalization
of the concept of an ordinary set whose membership
function only takes two values {0, 1}. Thus a fuzzy set F in
U may be represented as a set of ordered pairs of a
generic element « and its grade of membership function:
F={(u,p(u)u € U). When U is continuous, a fuzzy set
F can be written concisely as F = [, u(u)/u. When U is
discrete, a fuzzy set F is represented as

n
F=) nplu)/u;.
(=1

Ll ‘tion 2: Support, Crossover Point, and Fuzzy Single-
fon: (ue support of a fuzzy set F is the crisp set of all
points « in U such that wr(u)>0. In particular, the
element u in U at which u, =0.5. is called the crossover
point and a fuzzy set whose support is a single point in U
with 4 = 1.0 is referred to as fuzzy singleton.

B. Set Theoretic Operations

. Let A and B be two fuzzy sets in U with membership

functions u, and u,, respectively. The set theoretic
operations of union, intersection and complement for
fuzzy sets are defined via their membership functions.
More specifically, see the following,

Definition 3: Union: The membership function y ,, 5 of
the union 4 U B is pointwise defined for all u €U by

Baop(u)=max{u (u),us(u)}.

Definition 4: Intersection: The membership function
K4~ p Of the intersection AN B is pointwise defined for
all ue U by

Panp(u)=min{p,(u),pg(u)}.

Definition 5: Complement: The membership function
w5 of the complement of a fuzzy set A is pointwise
defined for all u€ U by

() = 1= ().

Definition 6: Cartesian Product: If A,,"-+, A, are
fuzzy sets in U,, - -,U,, respectively, the Cartesian prod-
uct of A4,,---, A, is a fuzzy set in the product space
Uy X +++ XU, with the membership function
min {IJ’.4|( ul)’. o ’/“l’A,',(un)]

o (U oy ity ) =

or

Mgy - ><A,,(ul’“2*' ' 'v“n)=P~A,(“1)‘#,43(“2) v 'I-LA,,(“n)-

Definition 7: Fuzzy Relation: An n-ary fuzzy relation is a
fuzzy set in U, X -+ X U, and is expressed as

Ry x .. xU”={((u,,- o,

/.LR(ll|,"',u”))l(lll,'",l.l”)EU|X X(jn}'

Definition 8: Sup-Star Composition: If R and S are
fuzzy relations in U XV and V X W, respectively, the
composition of R and S is a fuzzy relation denoted by

vasIiMA L

. A

N
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/uspeed
) , KB
slow medium fast
1.0
FUZZIFICATION DEFUZZIFICATIO
M INTERFACE INTERFACE ’
B DECISION
0.5 MAKING
FUzZY Losic Fuzzy
(mph)
0 —
40 55 70 Speed PROCESS OUTPUT
P & STATE CONTROLLED AGTUAL CONTROL
Fig. 1. Diagrammatic representation of fuzzy speeds. “*Speed” is lin- SYSTEM NFUZZY
- : . " PN Wi NO
guistic variable with three terms: “slow,” *medium,” and *high. \PROGESS)
Fig. 2. Basic configuration of fuzzy logic controlier (FLC).

RS and is defined by
ReS= {[(u,w>, sup (i (11,7) % 1, mw))},

ueU,veV,weW}

where * could be any operator in the class of triangular
norms, namely, minimum, algebraic product, bounded
product, or drastic product (also see Part II [150]).

C. Linguistic Variables and Fuzzy Sets

Definition 9: Fuzzy Number: A fuzzy number F in a
continuous universe U, e.g., a real line, is a fuzzy set F in
U which is normal and convey, i.e.,

max pp(u) =1,
uel
pe(Auy +(1=2)u,)

= min(,up(ul),#r(“z))’
u,u €U,

(normal)

(convex)
re[o0,1].

The use of fuzzy sets provides a basis for a systematic
way for the manipulation of vague and imprecise con-
cepts. In particular, we can employ fuzzy sets to represent
linguistic variables. A linguistic variable can be regarded
either as a variable whose value is a fuzzy number or as a
variable whose values are defined in linguistic terms.
More specifically: see the following,

Definition 10: Linguistic Variables: A linguistic variable
is characterized by a quintuple (x, 7(x),U,G, M) in which
x is the name of variable; T(x) is the term set of x, that
is, the set of names of linguistic values of x with each
value being a fuzzy number defined on U; G is a syntactic
rule for generating the names of values of x; and M is a
semantic rule for associating with each value its meaning,
For example, if speed is interpreted as a linguistic vari-
able, then its term set T(speed) could be

T'(speed) = {slow, moderate, fast,
very slow, more or less fast, « - -}

where each term in T(speed) is characterized by a fuzzy
set in a universe of discourse U =[0,100]. We might inter-
pret “slow” as “a speed below about 40 mph,” “mod-
erate” as “a speed close to 55 mph,” and “fast” as “a
speed above about 70 mph.” These terms can be charac-
terized as fuzzy sets whose membership functions are
shown in Fig. 1.

D. Fuzzy Logic and Approximate Reasoning

In fuzzy logic and approximate reasoning, there are two
important fuzzy implication inference rules named the
generalized modus ponens (GMP) and the generalized
modus tollens (GMT):

premise 1; x is A',
premise 2: if x is A4 then y is B,

consequence: y is B’ (GMP)
premise 1: y is B,

premise 2: if x is A then y is B,

consequence: x is A'. (GMD)!

The fuzzy implication inference is based on the compo-:.
sitional rule of inference for approximate reasoning sug-..
gested by Zadeh in 1973 [146]. Here we introduce fuzzy
sets A, A’,B,B’ via linguistic variables x,y instead of
crisp sets in the traditional logic. The GMP, which re-
duces to “modus ponens” when A'=A4 and B'=B, is
closely related to the forward data-driven inference which
is particularly useful in the FLC. The GMT, which re-
duces to “modus tollens” when B'=not B and A4'= not |
A, is closely related to the backward goal-driven inference :
which is commonly used in expert systems, especially in :
the realm of medical diagnosis.

Definition 11: Sup-Star Compositional Rule of Inference: -
If R is a fuzzy relation in U X V, and x is a fuzzy set in U,
then the “sup-star compositional rule of inference” as- :
serts that the fuzzy set y in V induced by x is given by *
[144]

y=x°R |

where x © R is the sup-star composition of x and R. If the "
star represents the minimum operator, then this defini- -
tion reduces to Zadeh’s compositional rule of inference
[146].

III. Main IpeEa oF THE FLC

In this section, we present the main ideas underlying "
the FLC. To highlight the issues involved, Fig. 2 shows
the basic configuration of an FLC, which comprises four

i
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principal components: a fuzzification interface, a knowl-
' ge base, decision-making. logic, and a defuzzification

wserface.

E‘.
. 1) The fuzzification interface involves the following
*  functions:
' a) measures the values of input variables,
b b) performs a scale mapping that transfers the
| . range of values of input variables into corre-
o sponding universes of discourse,
JE ¢) performs the function of fuzzification that

—

converts input data into- suitable linguistic
values which may be viewed as labels of
fuzzy sets.

- The knowledge base comprises a knowledge of the
application domain and the attendant control goals.
It consists of a “data base” and a “linguistic (fuzzy)
control rule base:”

i, a) the data base provides necessary definitions,
which are used to define linguistic control
o rules and fuzzy data manipulation in an FLC,
. b) the rule base characterizes the control goals

and control policy of the domain experts by

means of a set of linguistic control rules.
The decisionmaking logic is the kernel of an FLC;
it has the capability of simulating human decision-
making based on fuzzy concepts and of inferring
fuzzy control actions employing fuzzy implication
and the rules of inference in fuzzy logic.
The defuzzification interface performs the follow-
ing functions:

a) a scale mapping, which converts the range of
values of output variables into corresponding
universes of discourse,
defuzzification, which yields a nonfuzzy con-
trol action from an inferred fuzzy control
action.

3

4

b)

We are now ready to describe the main ideas underly-
ing the FLC in terms of fuzzy logic. The structural param-
eters involved in the design of an FLC will be discussed at
a later point.

A. Fuzzy Conditional Statements and Fuzzy Control Rules

In an FLC, the dynamic behavior of a fuzzy system is
characterized by a set of linguistic description rules based
on expert knowledge. The expert knowledge is usually of
the form

IF (a set of conditions are satisfied) THEN (a set of

consequences can be inferred).

Since the antecedents and the consequents of these

~THEN rules are associated with fuzzy concepts (linguistic
.rms), they are often called fuzzy conditional statements.
In our terminology, a fuzzy control rule is a fuzzy condi-
tional statement in which the antecedent is a condition in
its application domain and the consequent is a control
action for the system under control. Basically, fuzzy con-
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trol rules provide a convenient way for expressing control
policy and domain knowledge. Furthermore, several lin-
guistic variables might be involved in the antecedents and
the conclusions of these rules, When this is the case, the
system will be referred to as a multi-input—-muiti-output
(MIMO) fuzzy system. For example, in the case of two-
input-single-output (MISO) fuzzy systems, fuzzy control
rules have the form:

Ry ifxis A,and y is B, then z is C,,
R,:if x is A, and y is B, then z is C,,

R, ifxis A,and yis B, then z is C,,

where x, y, and z are linguistic variables representing two
process state variables and one control variable; A4;, B;,
and C, are linguistic values of the linguistic variables x, y,
and z in the universes of discourse U, V, and W, respec-
tively, with i=1,2,---,n; and an implicit sentence con-
nective also links the rules into a rule set or, equivalently,
a rule base. :

A fuzzy control rule, such as “if (x is A4, and y is B;)
then (z is C;),” is implemented by a fuzzy implication
(fuzzy relation) R; and is defined as follows:

MR, & /““(A,-andB,-—bC,-)(u’v7w)
= [MA,(”) and P«B,.( V)] - ,ch,(W)

where A; and B, is a fuzzy set A;XB; in UXV;
R,2(A; and B,) > C, is a fuzzy implication (relation) in
U XV xXW;and — denotes a fuzzy implication function.
As will be seen later, there are many ways in which a
fuzzy implication may be defined.

B. Fuzzification Operator

A fuzzification operator has the effect of transforming
crisp data into fuzzy sets. Symbolically,

x = fuzzifier(x,)

where x, is a crisp input value from a process; x is a
fuzzy set; and fuzzifier represents a fuzzification operator.

C. Sentence Connective Operators

An FLC consists of a set of fuzzy control rules which
are related by the dual concepts of fuzzy implication and
the sup-star compositional rule of inference. These fuzzy
control rules are combined by using the sentence connec-
tives and and also.. Since each fuzzy control rule is
represented by a fuzzy relation, the overall behavior of a
fuzzy system is characterized by these fuzzy relations. In
other words, a fuzzy system can be characterized by a
single fuzzy relation which is the combination of the fuzzy
relations in the rule set. The combination in question
involves the sentence connective also. Symbolicaily,

R=also(Rl’R2"”’Ri""’Rn)

where also represents a sentence connective.
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D. Compositional Operator

To infer the output z from the given process states x, y
and the fuzzy relation R, the sup-star compositional rule
of inference is applied

z=yo(x°R)

where o is the sup-star composition.

E. Defuzzification Operator

The output of the inference process so far is a fuzzy set,
specifying a possibility distribution of control action. In
the on-line control, a nonfuzzy (crisp) control action is
usually required. Consequently, one must defuzzify the
fuzzy control action (output) inferred from the fuzzy
control algorithm, namely:

z, = defuzzifier(z),

where z,, is the nonfuzzy control output and defuzzifier is
the defuzzification operator.

F. Design Parameters of the FLC

The principal design parameters for an FLC are the
following:

1) fuzzification strategies and the interpretation of a
fuzzification operator (fuzzifier),
2) data base:
a) discretization /normalization of universes of
discourse,
b) fuzzy partition of the input and output spaces,
¢) completeness,
d) choice of the membership function of a pri-
mary fuzzy set;
3) rule base:
a) choice of process state (input) variables and
control (output) variables of fuzzy control rules,
b) source and derivation of fuzzy control rules,
¢) types of fuzzy control rules,
d) consistency, interactivity, completeness of fuzzy
control rules;
4) decision making logic:
a) definition of a fuzzy implication,
b) interpretation of the sentence connective and,
c¢) interpretation of the sentence connective also,
d) definitions of a compositional operator,
e) inference mechanism;
5) defuzzification strategies and the interpretation of
a defuzzification operator (defuzzifier).

IV. FuzziFicaTION STRATEGIES

Fuzzification is related to the vagueness and impreci-
sion in a natural language. It is a subjective valuation
which transforms a measurement into a valuation of a
subjective value, and hence it could be defined as a
mapping from an observed input space to fuzzy sets in
certain input universes of discourse. Fuzzification plays
an important role in dealing with uncertain information
which might be objective or subjective in nature.

In fuzzy control applications, the observed data are
usually crisp. Since the data manipulation in an FLC is
based on fuzzy set theory, fuzzification is necessary during
an earlier stage. Experience with the design of an FLC
suggests the following principal ways of dealing with
fuzzification.

1) A fuzzification operator ‘“‘conceptually” converts a
crisp value into a fuzzy singleton within a certain
universe of discourse. Basically, a fuzzy singleton is
a precise value and hence no fuzziness is intro-
duced by fuzzification in this case. This strategy has
been widely used in fuzzy control applications since
it is natural and easy to implement. It interprets an
input x, as a fuzzy set 4 with the membership
function u,(x) equal to zero except at the point
X, at which u (x,) equals one.

2) Observed data are disturbed by random noise. In
this case, a fuzzification operator should convert
the probabilistic data into fuzzy numbers, i.e., fuzzy
(possibilistic) data. In this way, computational effi-
ciency is enhanced since fuzzy numbers are much
easier to manipulate than random variables. In
[76], an isosceles triangle was chosen to be the
fuzzification function. The vertex of this triangle
corresponds to the mean value of a data set, while
the base is twice the standard deviation of the data
set. In this way, we form a triangular fuzzy number
which is convenient to manipulate [42]. In this
connection, it should be noted that Dubois and
Prade [20] defined a bijective transformation which
transforms a probability measure into a possibility
measure by using the concept of the degree of
necessity. Basically, the necessity of an event, E, is
the added probability of elementary events in E
over the probability assigned to the most frequent
elementary event outside of E. Based on the
method of Dubois and Prade, the histogram of the
measured data may be used to estimate the mem-
bership function for the transformation of probabil-
ity into possibility [17].

3) In large scale systems and other applications, some
observations relating to the behavior of such sys-
tems are precise, while others are measurable only
in a statistical sense, and some, referred to as
“hybrids,” require both probabilistic and possibilis-
tic modes of characterization. The strategy of fuzzi-
fication in this case is to use the concept of “hybrid
numbers” [42], which involve both uncertainty
(fuzzy numbers) and randomness (random num-
bers). The use of hybrid number arithmetic in the
design of an FLC suggests a promising direction
that is in need of further exploration.

V. Dara BASE

The knowledge base of an FLC is comprised of two
components, namely, a data base and a fuzzy control rule
base. We shall address some issues relating to the data
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‘ TABLE 11
\ QUANTIZATION AND PRIMARY Fuzzy SETS USING A NUMERICAL DEFINITION
o Level No. Range NB NM NS ZE PS PM. PM
) < —3.2 1.0 03 00 00 00 00 00
=35 —-32<xy<s—~1t6 07 07 00 09 .00-00 00
-4 -l6<x,<-08 03 1.0 03 00 00 00 00
-3 -08<xy,<-04 00 07 07 00 00 00 00
-2 -04<xy<-02 00 03 10 03 00 00 00
-1 -02<x,<—-01 00 00 07 07 00 00 00
0 -01<xy,<+01 00 00 03 10 03 00 00
1 +01<xy,<+02 00 00 00 07 07 00 00
2 +02<x,<+04 00 00 00 03 1.0 03 00
3 +04<x,<+08 00 00 00 00 07 07 00
4 +08<xy,<+16 00 00 00 00 03 1.0 03
5 +16<sy<+32 00 00 00 00 00 07 07
6 32<x, 0o 00 00 00 00 03 10

-

e e —————

base in this section and to the rule base in the next
section. The concepts associated with a data base are
used to characterize fuzzy control rules and fuzzy data
manipulation in an FLC. These concepts are subjectively
defined and based on experience and engineering judg-
ment. In this connection, it should be noted that the
correct choice of the membership functions of a term set
plays an essential role in the success of an application. In
what follows, we shall discuss some of the important
aspects relating to the construction of the data base in an

FLC.

A.( scretization / Normalization of Universes of Discourse

The representation of uncertain information with fuzzy
sets brings up the problem of quantifying such informa-
tion for digital computer processing. In general, the rep-
resentation depends on the nature of the universe of
discourse. A universe of discourse in an FLC is either
discrete or continuons. If the universe is continuous, a
discrete universe may be formed by a discretization of the
continuous universe. Furthermore, a continuous universe
may be normalized, as will be seen at a later point in this
section.

1) Discretization of a Universe of Discourse: Discretiza-
tion of a universe of discourse is frequently referred to as
quantization. In effect, quantization discretizes a universe
into a certain number of segments (quantization levels),
Each segment is labeled as a generic element, and forms
a discrete universe. A fuzzy set is then defined by assign-
ing grade of membership values to each generic element
of the new discrete universe. A look-up table based on
discrete universes, which defines the output of a con-
troller for all possible combinations of the input signals,
can be implemented by off-line processing in order to
shorten the running time of the controller [90]. In the
case of an FLC with continuous universes, the number of
qu  ization levels should be large enough to provide an
at  .ate approximation and yet be small to save memory
storage. The choice of quantization levels has an essential
influence on how fine a control can be obtained. For
example, if a universe is quantized for every five units of
measurement instead of ten units, then the controller is
twice as sensitive to the observed variables.

For the purpose of discretization, we need a scale
mapping, which serves to transform measured variables
into values in the discretized universe. The mapping can
be uniform (linear), nonuniform (nonlinear), or both. The
choice of quantization levels reflects some a priori knowl-
edge. For example, coarse resolution could be used for
large errors and fine resolution for small errors. Thus, in
a three-input-one-output fuzzy system, we may have con-
trol rules of the form:

R;:if error (e) is A;, sum of errors (ie) is B,
and change of error (de) is C; then output is D;.
A simple instaﬁce of an FLC can be represented by
K [u(k)] = F[Ke(k), Kyie(k), Ksde(k)],

where F denotes the fuzzy relation defined by the rule
base and K,,i=1,2,3,4, represents an appropriate scal-
ing mapping. In this relation, we see an analogy to the
parameters of a conventional PID controller [63],{105], in
which as a special case F is a linear function of its
arguments. An example of discretization is shown in Table
II, where a universe of discourse is discretized into 13
levels with seven terms ( primary fuzzy sets) defined on it.
In general, due to discretization, the peformance of an
FLC is less sensitive to small deviations in the values of
the process state variables.

2) Normalization of a Universe of Discourse: The nor-
malization of a universe requires a discretization of the
universe of discourse into a finite number of segments,
with each segment mapped into a suitable segment of the
normalized universe. In this setting a fuzzy set is then
defined by assigning an explicit function to its member-
ship function. The normalization of a continuous universe
also involves a priori knowledge of the input/
output space. The scale mapping can be uniform, non-
uniform, or both. One example is shown in Table III,
where the universe of discourse, [—6.0, +4.5], is trans-
formed into the normalized closed interval [—1, +1].

B. Fuzzy Partition of Input and Output Spaces

A linguistic variable in the antecedent of a fuzzy con-
trol rule forms a fuzzy input space with respect to a
certain universe of discourse, while that in the consequent
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TABLE 11
NORMALIZATION AND PRIMARY Fuzzy SETS USING A FUNCTIONAL DEFINITION
Normalized  Normalized
Universe Segments Range uy oy Primary Fuzzy Sets
{-1.0,-05]) [-69,-4.1] —-1.0 04 NB
[-05,-03) [-4.1,-22] <05 0.2 NM
[-03,-00}] [-22,-00 -02 02 NM
[-1.0,+1.0] [-00,+0.2] [-0.0,+1.0] 0.0 02 ZE
[+0.2,+06] [+10,+25] 02 02 PS
[+06,+1.0] [+25 +45] 05 02 PM
1.0 04 PB
coarse ; : :
respectively, the maximum rule number is 3 X 7. It should
N z P be noted that the fuzzy partition of the fuzzy input/
output space is not deterministic and has no unique
solution. A heuristic cut and trial procedure is usually
needed to find the optimal fuzzy partition.
1 0 +1'
@) C. Completeness
finer Intuitively, a fuzzy control algorithm should always be
NB NM NS PS PM FB able to infer a proper control action for every state of
process. This property is called “completeness.” The com-
pleteness of an FLC relates to its data base, rule base, or
both.
< » 1) Data Base Strategy: The data base strategy is con-
B 0 +

(b)

Fig. 3. Diagrammatic representation of fuzzy partition. (a) Coarse
fuzzy partition with three terms: N, negative; ZE, zero; and P,
positive. (b) Finer fuzzy partition with seven terms: NB, negative big;
NM, negative medium; NS, negative small; ZE, zero; PS, positive
small; PM, positive medium; and PB, positive big.

of the rule forms a fuzzy output space. In general, a
linguistic variable is associated with a term set, with each
term in the term set defined on the same universe of
discourse. A fuzzy partition, then, determines how many
terms should exist in a term set. This is equivalent to
finding the number of primary fuzzy sets. The number of
primary fuzzy sets determines the granularity of the con-
trol obtainable with an FLC. The primary fuzzy sets
" (linguistic terms) usuaily have a meaning, such as NB:
negative big; NM: negative medium; NS: negative small;
ZE: zero; PS: positive small; PM: positive medium; and
PB; positive big. A typical example is shown in Fig. 3,
depicting two fuzzy partitions in the same normalized
universe [—1, +1]. Membership functions having the
forms of triangle-shaped and trapezoid-shaped functions
are used here. Since a normalized universe implies the
knowledge of the input/output space via appropriate
scale mappings, a well-formed term set can be achieved as
shown. If this is not the case, or a nonnormalized universe
is used, the terms could be asymmetrical and unevenly
distributed in the universe. Furthermorg, the cardinality
of a term set in a fuzzy input space determines the
maximum number of fuzzy control rules thdt we can
construct. In the case of two-input-one-output fuzzy sys-
tems, if the cardinalities of T(x) and T(y) are 3 and 7,

cerned with the supports on which primary fuzzy sets are
defined. The union of these supports should cover the
rélated universe of discourse in relation to some level set
€. This property of an FLC is called e-completeness. In
general, we choose the level e at the crossover point as:
shown in Fig. 3, implying that we have a strong belief in;
the positive sense of the fuzzy control rules which are
associated with the FLC. In this sense, a dominant rule
always exists and is associated with the degree of belief
greater than 0.5. In the extreme case, two dominant rules,
are activated with equal belief 0.5,

2) Rule Base Strategy: The rule base strategy has to do
with the fuzzy control rules themselves. The property of
completeness is incorporated into fuzzy control rules
through design experience and engineering knowledge.,
An additional rule is added whenever a fuzzy condition is.
not included in the rule base, or whenever the degree of
partial match between some inputs and the predefined:
fuzzy conditions is lower than some level, say 0.5. The
former shows that no control action will result. The latter.
indicates that no dominant rule will be fired.

D. Membership Function of a Primary Fuzzy Set

There are two methods used for defining fuzzy sets,
depending on whether the universe of discourse is dis-
crete or continuous: a) numerical and b) functional. _

1) Numerical Definition: In this case, the grade of mem-
bership function of a fuzzy set is represented as a vector
of numbers whose dimension depends on the degree of
discretization. An illustrative example is shown in Table
I1. In this case, the membership function of each primary

:

-
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Fig. 4. Example of functional definition of primary fuzzy sets.

[ fuzzy set has the form of

5

/"‘f(u) = Z a;/u;,

i=1

where

——o

a={03,0.7,1.0,0.7,0.3].

2) Functional Definition: A functional definition ex-
presses the membership function of a fuzzy set in a
functional form, typically a bell-shaped function, triangle-
shaped function, trapezoid-shaped function, etc. Such
functions are used in FLC because they lead themselves
to manipulation through the use of fuzzy arithmetic. The
functional definition can readily be adapted to a change
in the normalization of a universe. Table III and Fig. 4
show an example of a functional definition expressed as:

( —(x-uf)z}

2
20f

N e ——————— e~

() = exp{

Note that if the normalized universe is changed, the
parameters u,, oy should be changed accordingly.

Either a numerical definition or functional definition
may be used to assign the grades of membership to the
primary fuzzy sets. The choice of grades of membership is
based on the subjective criteria of the decision. In particu-
lar, as we mentioned before, if the measurable data might
be disturbed by noise, the membership functions should
\. be sufficiently wide to reduce the sensitivity to noise. This
raises the issue of the fuzziness or, more accurately, the
| specificity of a membership function, which affects the
robustness of an FLC. This issue is discussed in greater
detail in [58].

\' VI. RuULE Base

A fuzzy system is characterized by a set of linguistic
statements based on expert knowledge. The expert knowl-
edge is usually in the form of “if—then” rules, which are
easily implemented by fuzzy conditional statements in
y fuzzy logic. The collection of fuzzy control rules that are
. expressed as fuzzy conditional statements forms the rule
" ¥ = or the rule set of an FLC. In this section, we shall

aine the following topics related to fuzzy.control
rules: choice of process state (input) variables and control
(output) variables, source and derivation, justification,

types of fuzzy control rules, and properties of consistency,

l interactivity, and completeness.
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A. Choice of Process State Variables and Control Variables
of Fuzzy Control Rules

Fuzzy contrcl-rules are more conveniently formulated
in linguistic. rather than numerical terms. The proper
choice of process state variables and control variables is
essential to the characterization of the operation of a
fuzzy system. Furthermore, the selection of the linguistic
variables has a substantial effect on the performance of
an FLC. As was stated earlier, experience and engineer-
ing knowledge play an important role during this selection
stage. In particular, the choice of linguistic variables and
their membership function have a strong influence on the
linguistic structure of an FLC. Typically, the linguistic
variables in an FLC are the state, state error, state error
derivative, state error integral, etc.

B. Source and Derivation of Fuzzy Control Rules

There are four modes of derivation of fuzzy control
rules, as reported in [103]. These four modes are not
mutually exclusive, and it seems likely that a combination
of them would be necessary to construct an effective
method for the derivation of fuzzy control rules.

1) Expert Experience and Control Engineering Knowledge:
Fuzzy control rules have the form of fuzzy conditional
statements that relate the state variables in the an-
tecedent and process control variables in the consequents.
In this connection, it should be noted that in our daily life
most of the information on which our decisions are based
is linguistic rather than numerical in nature. Seen in this
perspective, fuzzy control rules provide a natural frame-
work for the characterization of human behavior and
decisions analysis. Many experts have found that fuzzy
control rules provide a convenient way to express their
domain knowledge. This explains why most FLCs are
based on the knowledge and experience which are ex-
pressed in the language of fuzzy if-then rules [64], [47],
[50], [80], [82], [59], [118], [113], [58], [127], [4].

The formulation of fuzzy control rules can be achieved
by means of two heuristic approaches. The most common
one involves an introspective verbalization of human ex-
pertise. A typical example of such verbalization is the
operating manual for a cement kiln. Another approach
includes an interrogation of experienced experts or opera-
tors using a carefully organized questionnaire. In this
manner, we can form a prototype of fuzzy control rules
for a practicular application domain. For optimized per-
formance, the use of cut and trial procedures is usuaily a
necessity.

2) Based on Operator’s Control Actions: In many indus-
trial man—-machine control systems, the input—output re-
lations are not known with sufficient precision to make it
possible to employ classical control theory for modeling
and simulation. And yet skilled human operators can
control such systems quite successfully without having any
quantitative models in mind. In etfect, a human operator
employs—consciously or subconsciously—a set of fuzzy
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if-then rules to control the process. As was pointed out
by Sugeno, to automate such processes, it is expedient to
express the operator’s control rules as fuzzy if-then rules
employing linguistic variables. In practice, such rules can
be deduced from the observation of human controller’s
actions in terms of the input-output operating data
[97]-[99].

3) Based on the Fuzzy Model of a Process: In the linguis-
tic approach, the linguistic description of the dynamic
characteristics of a controlled process may be viewed as a
fuzzy model of the process. Based on the fuzzy model, we
can generate a set of fuzzy control rules for attaining
optimal performance of a dynamic system. The set of
fuzzy control rules forms the rule base of an FLC. Al-
though this approach is somewhat more complicated, it
yields better performance and reliability, and provides a
more tractable structure for dealing theoretically with the
FLC. However, this approach to the design of an FLC has
not as yet been fully developed.

4) Based on Learning: Many FLCs have been built to
emulate human decision-making behavior, but few are
focused on human learning, namely, the ability to create
fuzzy control rules and to modify them based on experi-
ence. Procyk and Mamdani [87] described the first self-
organizing controller (SOC). The SOC has a hierarchical
structure which consists of two rule bases. The first one is
the general rule base of an FLC. The second one is
constructed by ‘“meta-rules” which exhibit human-like
learning ability to create and modify the general rule base
based on the desired overall performance of the system.
Recently, further studies relating to the SOC have been
carried out at Queen Mary College and elsewhere [60],
[94], [102], [95], [106]. A very interesting example of a
fuzzy rule-based system which has a learning capability is
Sugeno’s fuzzy car [97], [99]. Sugeno’s fuzzy car can be
trained to park by itself.

C. Justification of Fuzzy Control Rules

There are two principal approaches tc-the -derivation of
fuzzy control rules. The first is & heuristic method in
which a collection of fuzzy control rules is formed by
analyzing the behavior of a controlled process. The con-
trol rules are derived in such a way that the deviation
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Rule justification by using phase plane. (a) Phase—plane trajectory. (b) System step response.

from a desired state can be corrected and the control
objective can be achieved. The derivation is purely heuris-
tic in nature and relies on the qualitative knowledge of
process behavior. Several methods of adjustment of rule
selection have been studied [1], [49], [7], [6]. A brief
review of these results is given in the following. The
second approach is basically a deterministic method which
can systematically determine the linguistic structure
and /or parameters of the fuzzy control rules that satisfy
the control objectives and constraints [111], [103], [104],
[101]. ,

Mamdani [1] proposed a prescriptive algorithm for de-
riving the “best” control rules by restricting system res
sponses to a “prescriptive fuzzy band” which is specified
by fuzzy control rules. However, the convergence of the
prescriptive method requires a careful analysis. :

King and Mamdani [49] introduced another useful
method for rule justification. So-called “scale mappings”
should be adjusted first so that the system trajectory can
terminate on a desired state. The rule justification is done
by referring to a closed system trajectory in a phase plane.
A knowledge of parameter-adjusting based on phase plane
analysis (e.g., overshoot, rise time) and an intuitive feel
for the behavior of the closed loop system are required,
The principle of global rule modification in symmetry and
monotonicity is also employed.

For example, Fig. 5 shows the system response of a
process to be controlled, where the input variables of the
FLC are the error (E) and error derivative (DE). The
output is the change of the process input (CI). We
assume that the term sets of input/output variables have
the same cardinality, 3, with a common term {negatlve,,
zero, positive}. The prototype of fuzzy control rules is
tabulated in Table IV and a justification of fuzzy control
rules is added in Table V. The corresponding rule of
region i can be formulated as rule R; and has the effect
of shortening the rise time. Rule R, for region if de:
creases the overshoot of the system’s response. More
specifically,

R;: if (E is positive and DE is negative)
then CI is positive,

Lo 4

R,;: if (E is negative and DE is negative)
then CI is negative.

Mg{; S
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TABLE 1V
PrOTOTYPE OF Fuzzy ConTROL RULES WiTH TERM SETS
{NeGATIVE, ZERO, POSITIVE}

Rule No. E DE Cl Reference Point
1 P VA P a.e.d
2 z N N b.f.j
3 N V4 N c.g.k
4 z P P d.h.l
5 z z z set point
TABLE V

RULE JUSTIFICATION WITH TERM SETS
{NEGATIVE, ZERO, PosITivE}

Rule No. E DE Cl Reference Range
6 P N P i (rise time),v
7 N N N ii (overshoot), vi
8 N P N iii, vii
9 P P P iv, viii
10 P N VA ix
11 N P Z Xi

TABLE VI

ProTOTYPE OF Fuzzy ConTROL RULES WITH TERM SETS
) (NB,NM,NS.ZE, PS, PM, PB)}

Rule No. E DE Cl Reference Point

1 PB ZE PB a

2 PM ZE PM e

3 PS ZE PS i

4 ZE NB NB b

S ZE NM NM f

6 ZE NS NS j

7 NB ZE NB ¢

8 NM ZE NM g

9 NS ZE NS k
10 ZE PB PB d
11 ZE PM PM h
12 ZE PS PS 1

13 ZE ZE ZE set point

TABLE VII
RuLEe JusTiFicATION wiTH TERM SETS {NB, NM.NS.ZE, PS. PM, PM}
Rule No. E DE Cl Reference Range

14 PB NS PM i (rise time)
15 PS NB NM i (overshoot)
16 NB PS NM iit
17 NS PB PM iti
18 PS NS ZE ix
19 NS PS ZE Xi

Better control performance can be obtained by using finer
fuzzy partitioned subspaces, for example, with the term
set {NB, NM, NS, ZE, PS, PM, PB}. The prototype and the
justification of fuzzy control rules are also given in Table
VI and Table VII.

A slightly modified method was suggested in [7]. It
tracked the linguistic trajectory of a closed loop system in

“linguistic phase plane.” The main idea is that scale
.nappings should be adjusted first to yield approximately a
desired trajectory behavior. This can be inferred from the
linguistic trajectories. Then rule modification can be ac-
complished by using the linguistic trajectory behavior to
optimize the system response in the linguistic phase plane.
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decrease overshoot
—

NBLNM NM 7€ ZE zE NB NM NM ZE ZE ZE
NB NM NM zE 7
NB NS 9 @ zE zE Ps

NS ZE @B & Ps @9 E
ZE ZE @D @ M €W ro
ZE ZE ZE PM PM PB
IE dacrease rise tims IE
(a) (b)

Fig. 6. Rule justification by using a linguistic phase plane, (a) Linguis-

tic trajectory with initial rules. (b) Linguistic trajectory with modified -

rules. (From Braae and Rutherford {7).

An additional advantage of this approach is that the
measurement noise appearing in the linguistic phase plane
is less of a problem than that in the nonlinguistic phase
plane. An example is shown in Fig. 6.

An approach to generating the rule base of an
FLC, which is analogous to the conventional controller
design by pole placement, is described in [6]. Braae and
Rutherford assumed that the fuzzy control rules of an
open system (process) and a desired closed-loop system
were initially given. The purpose is to synthesize a linguis-
tic control element (FLC) based on the fuzzy models
described above. The main idea is to invert the low order
linguistic mode! of a certain open loop system. However,
linguistic inversion mappings are usually incomplete or
multivalued. So, an “approximate” strategy, which is
somewhat heuristic and subjective, is necessary to com-
plete the inverse mapping which has a reasonable
singled-valued solution. This approximation has substan-
tial effect on “linguistic substitution™ which further deter-
mines a fuzzy controller. This method is restricted to
relative low order systems but it provides an explicit
solution for rule generation of the FLC, assuming that
fuzzy models of the open and closed systems are avail-
able.

The systematic rule justification has recently been pro-
posed and studied by means of fuzzy relational equations
(13], [15]), [84], [125] and linguistic control rules [111],
[103], [104], [101). The basic notion of these two ap-
proaches is so-called ““fuzzy identification.” As in conven-
tional identification, the fuzzy identification comprises
two phases, namely, structure identification and parame-
ter estimation. The studies in question deal with one, or
both.

Tong [111] introduced the concept of “logical examina-
tion” (LE) for converting process input-output data into
a set of fuzzy control rules. Tong tackled both identifica-
tion problems simultaneously, and used a correlation
analysis of the LE to determine the linguistic structure.
However, it is still somewhat heuristic and subjective, and
encounters difficulties in the identification of multivari-
able fuzzy systems.

Takagi and Sugeno [103] proposed a fuzzy identifica-
tion algorithm for modeling human operator’s control

N
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actions. In this case. a suitable linguistic structure is easy
to find since one can observe and/or ask for the kind of
information which the operator needs, such as process
state variables. The fuzzy control rules to be identified
have the form of

R, ifxis A;,---.and yis B; then z = fi(x, - ',y)

where x,---,y, and z are linguistic variables representing
the process state variables and the control variable;
A, -+, B; are linguistic terms of the linguistic variables
x,- -+, v, and z in the universes of discourse U,---,V/, and
W, respectively, with i=1,2,--+,n; and z is a logical
function of the process state variables such as a linear
function of x,---,y. In this way, the problem is reduced
to parameter estimation, which is done by optimizing a
least-square performance index via a weighted linear re-
gression method. The inference mechanism of this FLC
will be discussed in Part 11 [150].

Sugeno has successfully applied this method to the
design of an FLC for navigating a model car through a
crank-shaped curve [98] and for parking a model car in a
garage [97],[99). Sugeno’s method provides a more sys-
tematic approach to the design of an FLC, and the
experimental results are quite remarkable. However, some
steps of this algorithm, such as the choice of process state
variables, the fuzzy partition of input spaces, and the
choice of the membership functions of primary fuzzy sets,
depend on trial-and-error.

Recently, Takagi and Sugeno [104] improved their algo-
rithm so that parameter estimation can be fully imple-
mented. At issue is the problem of structure identifica-
tion, which is partly addressed in this paper. Further
research on this problem has been reported by Sugeno
and Kang in [101].

Another approach based on fuzzy relational equations
is directed at the same problems. The structure identifica-
tion requires the determination of the system order and
time delays of discrete-time fuzzy models, while the pa-
rameter estimation reduces to the determination of the
overall fuzzy relation matrix from the input-output data
of the system. The reader is referred to [13],[15],[84],[125]
for further details.

D. Types of Fuzzy Control Rules

Depending on their nature, two types of fuzzy control
rules, state evaluation fuzzy control rules and object eval-
uation fuzzy control rules, are currently in use in the
design of the FLC.

1) State Evaluation Fuzzy Control Rules: Most FLC'’s
have state evaluation fuzzy control rules which, in the
case of MISO systems, are characterized as a collection of
rules of the form

Ryifxis Ay,--+, and y is B, then z is C|
R,y if xis A,, -, and y is B,.then z is C,
R, ifxis A, -+, and yis B, then z is C,

IEEF TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 20, NO. 2. MARCH /APRIL 1990

where x.- -, v, and z are linguistic variables representing
the process state variables and the control variable;
A+, B;, and C; are the linguistic values of the linguistic
variables x,---,y, and z in the universes of discourse
U, -+, V, and W, respectively, i =1,2,- -, n.

In a ‘more general version, the consequent is repre-
sented as a function of the process state variables x, -+, y,
i.e.,

Ri:ifxis A;,--+,and y is B; then z= f,(x, - -,y).

Fuzzy control rules of this type, which are referred to
as ‘“state evaluation fuzzy control rules,” evaluate the
process state (e.g., state, state error, state integral) at time
t and compute a fuzzy control action at time ¢ as a
function of (x,*+ -, y) and the control rules in the rule set.

2) Object Evaluation Fuzzy Control Rules: Yasunobu,
Miyamoto, and lhara [135] proposed another algorithm
which predicts present and future control actions and
evaluates control objectives, It is called “object evaluation
fuzzy control,” or “predictive fuzzy control.” The rules in
question, which are derived from skilled operator’s expe-
rience, are referred to as “object evaluation fuzzy control
rules.” A typical rule is described as

R if (uis C;> (xis A, and y is B;)) then u is C,.

A control command is inferred from an objective evalu-

ation of a fuzzy control result that satisfies the desired.

states and objectives. A control command u takes a crisp
set as a value, and x,y are performance indices for the
evaluation of the ith rule, taking values such as “good” or
“bad.” The most likely control rule is selected through
predicting the results (x, y) corresponding to every con-
trol command C;.

In linguistic terms, the rule is interpreted as: “if the
performance index x is A; and index y is B; when a

control command u is chosen to be C;, then this rule is

selected and the control command C; is taken to be the
output of the controller.”

In automatic train operation, a typical control rule is if
the control notch is not changed and if the train stops in the
predetermined allowance zone, then the control notch is not
changed.

It is well known that systems control encounters diffi-
culties in satisfying multiple performance indices simulta-
neously and in achieving accurate control in the presence
of disturbances. In such circumstances, fuzzy control pro-
vides an effective framework for solution. However, the
state evaluation fuzzy control does not evaluate the com-
puted control actions as human operators do. By contrast,
the predictive fuzzy control provides a mechanism for
evaluation so that the desired states and control objec-
tives can be achieved more easily. It should be noted that
predictive control has been successfully applied to auto-
matic train operation [135], [136], [139] as well as to
automatic container crane operation systems [137]-[139].

—_—
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operating trains and cranes as skillfully as an experienced
((7 ator.

E. Properties of Consistency, Interactivity, and Completeness

1) Completeness: Please refer to Section V of this pa-

er.

2) Number of Fuzzy Control Rules: There is no general
procedure for deciding on the optimal number of fuzzy
control rules since a number of factors are involved in the
decision, e.g., performance of the controller, efficiency of
computation, human operator behavior, and the choice of
linguistic variables.

3) Consistency of Fuzzy Control Rules: If the derivation
of fuzzy control rules is based on the human operator
experience, the rules may be subjected to different per-
formance criteria. In practice, it is important to check on
the consistency of fuzzy control rules in order to minimize
the possibility of contradiction. {64],[12].

4) Interactivity of Fuzzy Control Rules: Assuming that a
collection of fuzzy control rules has the form

R;:if x is A, then z is C,, i=1,,n.
If an input x, is A4;, we would expect that the control
action z is C,. In fact, the control action z may be a
subset or a superset of C; [12], [26], [85], [18], [19],
depending on the definition of fuzzy implication and
sup-star composition. This may happen as a consequence
teraction between the rules.

.ne problem of interaction is complex and not as yet
well understood. The reported research in [12], [26], [85],
[18], [19] indicates that interactivity of rules can be con-
trolled by the choice of fuzzy implication and sup-star
composition. The consistency of rules may be improved
through the use of the concept of a fuzzy clustering of
fuzzy control rules. In this connection, it should be noted
that Sugeno’s reasoning and identification algorithm pro-
vides an alternative solution to these problems [104],
(101].
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Fuzzy Logic in Control Systems: Fuzzy
Logic Controller, Part 11

CHUEN CHIEN LEE, STUDENT MEMBER, IEEE

Abstract —During the past several years, fuzzy control has emerged as
one of the most active and fruitful areas for research in the applications
of fuzzy set theory, especially in the realm of industrial processes, which
do not lend themselves to controt by conventional methods because of a
lack of quantitative data regarding the input-output relations. Fuzzy
control is based on fuzzy logic—a logical system that is much closer in
spirit to human thinking and natural language than traditional logical
systems. The fuzzy logic controiler (FLC) based on fuzzy logic provides a
means of converting a linguistic control strategy based on expert knowl-
edge into an automatic control strategy. A survey of the FLC is pre-
sented: a general methodology for constructing an FLC and assessing its
performance is described; and problems that need further research are
pointed out. In particular, the exposition includes a discussion of
fuzzification and defuzzification strategies, the derivation of the database

- and fuzzy control rules, the definition of fuzzy implication, and an
_analysis of fuzzy reasoning mechanisms.

1. DeEecisioNMAKING Locic

S WAS noted in Part I of this paper [150], an FLC
47 -may be regarded as a means of emulating a skilled
hi....{n operator. More generally, the use of an FLC may
be viewed as still another step in the direction of model-
ing human decisionmaking within the conceptual frame-
work of fuzzy logic and approximate reasoning. In this
context, the forward data-driven inference (generalized
modus ponens) plays an especially important role. In what
follows, we shall investigate fuzzy implication functions,
the sentence connectives and and also, compositional
operators, inference mechanisms, and other concepts that
are closely related to the decisionmaking logic of an FLC.

A. Fuzzy Implication Functions

In general, a fuzzy control rule is a fuzzy relation which
is expressed as a fuzzy implication. in fuzzy logic, there
are many ways in which a fuzzy implication may be
defined. The definition of a fuzzy implication may be
expressed as a fuzzy implication function. The choice of a
fuzzy implication function reflects not only the intuitive
criteria for implication but also the effect of connective

also.
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1) Basic Properties of a Fuzzy Implication Function:
The choice of a fuzzy implication function involves a
number of criteria, which are discussed in [3], [24], [2],
(71], (18], [52], [19], [116], [85], [72], and [96]. In particular,
Baldwin and Pilsworth [3]_ considered the following basic
characteristics of a fuzzy implication function: fundamen-
tal property, smoothness property, unrestricted inference,
symmetry of generalized modus ponens and generalized
modus tollens, and a measure of propagation of fuzziness.
All of these properties are justified on purely intuitive
grounds. We prefer to say that the inference (conse-
quence) should be as close as possible to the input truth
function value, rather than be equal to it. This gives us a
more flexible criterion for choosing a fuzzy implication
function. Furthermore, in a chain of implications, it is
necessary to consider the “fuzzy syllogism” [147] associ-
ated with each fuzzy implication function before we can
talk about the propagation of fuzziness.

Fukami, Mizumoto, and Tanaka [24] have proposed a
set of intuitive criteria for choosing a fuzzy implication
function that constrains the relations between the an-
tecedents and consequents of a conditional proposition,
with the latter playing the role of a premise in approxi-
mate reasoning. As is well known, there are two impor-
tant fuzzy implication inference rules in approximate rea-
soning. They are the generalized modus ponens (GMP)
and the generalized modus tollens (GMT). Specifically,

premise 1: x is A’

premise 2: if x is A then y is B (GMP)
consequence: y is B’

premise 1: y is B’

premise 2: if x is A then y is B (GMT)

consequence: x is A’

in which 4, A', B, and B’ are fuzzy predicates. The
propositions above the line are the premises; and the
proposition below the line is the consequence. The pro-
posed criteria are summarized in Tables I and II. We
note that if a causal relation between “x is A” and “y is
B” is not strong in a fuzzy implication, the satisfaction of
criterion 2-2 and criterion 3-2 is allowed. Criterion 4-2 is
interpreted as: if x is A then y is B, else y is not B.

0018-9472 /90 /0300-0419$01.00 ©1990 IEEE
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TABLE 1 TABLE 11
InTUITIVE CRITERIA RELATING PRE] AND CONS INTUITIVE CRITERIA RELATING PRED AND CONS
rFor GIVEN PrRE2 IN GMP FOR GiviN PRE2 iN GMT
x is A'(Prel) y is B'(Cons) v is B'(Prel) x is A'(Cons)
Criterion | xis A yis B Criterion § yisnot B xisnot A
Criterion 2-1 v is very A yisvery B g::::g: (7) “' :: :g: nf(l;):eBor less B : :; 23: \lfrfg)r/err less A
Criterion 2-2 xisvery A yis B S E > ’ i
Criterion 3-1 x is more or less A y is more or less B g:::;:g: g; )‘: :z g v :: ti;nknown
Criterion 3-2 x is more or less A yis B Y rE
Criterion 4-1 xisnot A v is unknown
Criterion 4-2 xisnot A yisnot B

Although this relation is not valid in formal logic, we
often make such an interpretation in everyday reasoning.
The same applies to criterion 8.

2) Families of Fuzzy Implication Functions: Following
Zadeh’s [146] introduction of the compositional rule of
inference in approximate reasoning, a number of re-
searchers have proposed various implication functions in
which the antecedents and consequents contain fuzzy
variables. Indeed, nearly 40 distinct fuzzy implication
functions have been described in the literature. In gen-
eral, they can be classified into three main categories: the
fuzzy conjunction, the fuzzy disjunction, and the fuzzy
implication. The former two bear a close relation to a
fuzzy Cartesian product. The latter is a generalization of
implication in multiple-valued logic and relates to the
extension of material implication, implication in proposi-
tional calculus, modus ponens, and modus tollens [18]. In
what follows, after a short review of triangular norms and
triangular co-norms, we shall give the definitions of fuzzy
conjunction, fuzzy disjunction, and fuzzy implication.
Some. fuzzy implication functions, which are often em-
ployed in an FLC and are commonly found in the litera-
ture, will be derived.

Definition 1: Triangular Norms: The triangular norm =
is a two-place function from [0,1]X[0,1] to [0,1], i.e., *:
[0,1]%x[0,1] - [0, 1], which includes intersection, algebraic
product, bounded product, and drastic product. The
greatest triangular norm is the intersection and the least
one is the drastic product. The operations associated with
triangular norms are defined for all x,y [0, 1]:

intersection x A y=min{x, y)

algebraic product X y=uxy

bounded product xOy=max{0,x +y—1)}

x y=1
drastic product xAy=Cy x=]
0 x,y<l

Definition 2: Triangular Co-Norms: The. triangular co-
norms + is a two-place function from [0, 1] x[0, 1] to {0, 1],
ie. +:[0,1]x[0,1] to [0,1], which includes union, alge-
braic sum. bounded sum, drastic sum, and disjoint sum.
The operations associated with triangular co-norms are

defined for all x,y €[0,1]:
union x Vy=max{x,y}
algebraic sum xty=x+y—x

bounded sum x®y=min{l,x+y}

x y=0
drastic sum xWy=¢y x=90
1 x,y>0

disjoint sum xAy = max{min(x,1— y),

min(1— x, y)}.

The triangular norms are employed for defining conjunc-
tions in approximate reasoning, while the triangular co-
norms serve the same role for disjunctions. A fuzzy con-
trol rule, “if x is A4 then y is B,” is represented by a
fuzzy implication function and is denoted by A4 — B,
where A and B are fuzzy sets in universes U and V' with
membership functions u, and u g, respectively.

Definition 3: Fuzzy Conjunction: The fuzzy conjunction
is defined for all u€ U and vV by

A—->B=AXB
=/ w(u) = pp(v)/(u,v)
Uxv

where #* is an operator representing a triangular norm.
Definition 4: Fuzzy Disjunction: The fuzzy disjunction is
defined for all u €U and vV by
A—>B=AXB

= [ palu)+up(v)/(u,)
Uxy

where + is an operator representing a triangular co-norm.
Definition 5: Fuzzy Implication: The fuzzy implication is
associated with five families of fuzzy implication functions
in use. As before, * denotes a triangular norm and + is a
triangular co-norm.
4.1) Material implication:
A—> B=(not A)+B
4.2) Propositional calculus:
A— B=(not A)+(AxB)
4.3) Extended propositional calculus:
A— B=(not AXnot B)+ B
4.4) Generalization of modus ponens:
A— B=sup{ce[0,1], A*c < B)
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4, 5) Generalization of modus tollens:
A- B=inf{r€[0,1], B+t< A)

Based on these definitions, many fuzzy implication func-
tions may be generated by employing the triangular norms
and co-norms. For example, by using the definition of the
fuzzy conjunction, Mamdani’s mini-fuzzy implication, R,,
is obtained if the intersection operator is used. Larsen s
product fuzzy implication, R,, is obtained if the algebraic
product is used. Furthermore, R,, and R,, are obtained
if the bounded product and the drastic product are used,
respectively. The following fuzzy implications, which are
often adopted in an FLC, will be discussed in more detail
at a later point.

Mini-operation rule of fuzzy implication [Mamdanil:
R.=AXB
—f w ) A pg(v)/(u,v).
Product operation rule of fuzzy implication [Larsen]:
R,=AXB
= [ ppg(v) /().
UxV
Arithmetic rule of fuzzy implication [Zadeh}:
R,={(not AXV)®&(U X B)

= TAL = p () + (W) /Cu,v).
Uxv

Maxmin rule of fuzzy implication [Zadeh]:
R, =(AX B)U(not AXV)

=f (e OA pgWNDV A= (w))/(u,v).
Uxy
Standard sequence fuzzy implication:
R =AXV->UXB
= [ (> ) /()
UxV

where
T pg(u) <pg(v)
w ) > (v)={ ’
“ ? 0 pa(u)>pg(v).
Boolean fuzzy implication:
R, =(not AXV)u(U X B)

= (1= p DV (ugv))/Cu,v).
Uxv
Goguen's fuzzy implication:

R\=AXV-UXB
= (p () > pg(v))/(u,v)

UxV
where
1 palu) <pg(v)
pu)> pglv)= pplu)  pa(u)>pp(v).
Balv)

We note that Zadeh’s arithmetic rule follows from

~ vefinition 5.1 by using the bounded sum operator;

Zadeh’s maxmin rule follows from Definition 5.2 by using
the intersection and union operators; the standard se-
quence implication follows from Definition 5.4 by using
the bounded product; Boolean fuzzy implication follows

from Definition 5.1 by using the union; and Goguen's
fuzzy implication follows from Definition 5.4 by using the
algebraic product.

3) Choice of a Fiizzy Implication Function: First, we
investigate the consequences resulting from applying the
preceding forms of fuzzy implication in fuzzy inference
and, in particular, the GMP and GMT. The inference is
based on the sup—min compositional rule of inference. In
the GMP, we examine the consequence of the following
compositional equation:

B'=A°R
where

R fuzzy implication (relation),
o sup—-min compositional operator,
A" a fuzzy set which has the form:
A= [y w)/u
very A= A*= [,pi(u)/u
more or less A= A" = [,u%3(u)/u
not A= [,1—pn (u)/u.

Similarly, in the GMT, we examine the consequence of
the following equation:

A'=Ro B’
where

R fuzzy implication (relation)
B’ a fuzzy set that has the form:
not B=[,1—ug(u)/u
not very B = [,1—u%(v)/v
not more or less B = f,1— u%(v)/v
B= [, ugv)/v.

The Case of R,: Larsen’s Product Rule: A method for
computing the generalized modus ponens and the gener-
alized modus tollens laws of inference is described in [3).
The graphs corresponding to Larsen’s fuzzy implication
R, are given in Fig. 1. The graph with parameter u, is
used for the GMP, and the graph with up is used for the
GMT.

Larsen’s Product Rule in GMP: Suppose that A'= 4
(a > 0); then the consequence B, is inferred as follows:

B,;= A% o Rp
= [t sue [ a0 wg(v)/ ().
Uxy

The membership function K, of the fuzzy set B, is
pointwise defined for all ve V' by

Mg, (v)= su%mm{ p(u), () pp(v)}

= sup S,(1 - u%(u))
uel

where
Sp(us(u)) 2 min (s (1), pwa(u)pp(v)}-
{A'= A} The values of S,(u (1)) with a parameter

wg(v), say wpz(v)= 0.3 and 0.8, are indicated in Fig. 2 by a
broken line and dotted line, respectively. The member-
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(a)
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0.1

—n
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Hg)

(b
Fig. 1. Diagrams for calculation of membership functions. (a) BR,
versus p 4 with the parameter ug. (b) KR, VEISUS kg with parameter
Mg

Spt) Hgv)
A

‘0 1.0
.08
0.5 05
............. 0.3

0o >

”A(u)

Fig. 2. Approximate reasoning: generalized modus
Larsen’s product operation rule.

ponens with

ship function u 8, is obtained by
pg,(v) = sup min {p4(u), () pp(v)}

uel

= sup p4(u)pg(v)
uel

=pug(v), #A(u)zl-

{4'= A’} The values of §,(uZ(u)) with a parameter
wg(v), say wp(v)=0.3 and 0.8, are indicated in Fig. 3 by a
broken line and dotted line, respectively. The member-
ship function p g, May be expressed as

gy (v) = sup min {u(u), 41 p( )]}

uel

=up(v).
{A'= A%} The values of S,,(,u‘/’f(u)) with a parame-
ter pg(v), say ug(v)=0.3 and 0.8, are indicated in Fig. 4

Hgv)
1.0

sf ()

1.0
-~ 0.8

0.5

0
[JA(U)
Fig. 3. Approximate reasoning: generalized modus ponens with
Larsen’s product operation rule.
S o)
Z‘ A Hglv)
0.
1o | Ml 10
"~ 0.8
0.5 0.5
- 0.3
= >
0
Ry C
Fig. 4. Approximate reasoning: generalized modus ponens with

Larsen’s product operation rule.

SP(1'”A)
A
1.0 1-”A(u)
0.5 0.8
e ‘\——03 . ‘
0 T M)

Fig. 5. Approximate reasoning: generalized modus ponens with
Larsen’s product operation rule.

by a broken line and dotted line, respectively. The mem-
bership function u 8, is given by
I-LB,;(V) = sup min {#‘,’45(“)’#,4(”)#3(")}
uel
=pg(v).

{4'=not A} The values of §,(—p () with a pa-
rameter ug(v), say ugz(v)=0.3 and 0.8, are indicated in
Fig. 5 by a broken line and dotted line, respectively. The
membership function K, is given by

tgy(v) = sup min{1—pu,(u), ns(u)np(v)}

wuel
_ pp(v)
L+ pg(v)
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ST{1'”5)
A
{ 1.0
1-piglv)
0.5 0.8
& R > &= - »
0 0 1
" Mg Alg)
Fig. 6. Approximaie reqsoning: general.ized modus tollens with Fig. 8. Approximate regigghncgt:fsgf;g(l;ﬁe:‘illrz.odus tollens wnthLarsgn s
arsen’s product operation rule.
S, 145) Syt) M
A 2 1 OA 1.0
1.0 B A!B(u) ’ 08
/JB(V) .
0.6 0.5 0.5
,,,,,,,,,,, 0.3
P o
0
0 Algv)
Fig. 9. Approximate reasoning: generalized modus tollens with
Fig. 7. Approximate reasoning: generalized modus tollens with Larsen’s product operation rule.

Larsen’s product operation rule,

(

Larsen’s Product Rule in GMT: Suppose that B'= not TABLE TII
Pl SumMMARY OF INFERENCE REsSULTS FOR GENERALIZED Mobus PONENS
B (a > 0); then the consequence A, is inferred as fol-
lows: A Very A Moreor Less 4  Not A
R, SA
A;=R,(not BY) c kp K o OS#B;LB
R, iy Hp g T
= ,uA(u),uB(V)/(u,v)°f(1—,u‘};(v))/v. l4+pg  3+2ug—yS+duy  S+du, -1
Uxv v R, > > 5 1
The membership function w, of the fuzzy set A; is R, 05V 3-v5 v V5 -1 v |
pointwise defined for all u€ U by moTm e 2‘/_ s ‘/_2 &
: 3—y5 5-1
,U«A;(“)= sup min {g () pg(v),1 - p3(v)) R, 05Vug 7 Ve 5 Vka 1
v
ve ) R, iy I'LZB 1/#3 1
= sup S,(1-45(v)) Ry s % b 1

where
S,(1=p%(v)) 2 min{u () pg(v),1-p(v)}.

{B'=not B} The values of S,(1— ug(v)) with a pa-
rameter pu ,(u), say p(u)=0.3 and 0.8, are indicated in
Fig. 6 by a broken line and dotted line, respectively. The
membership function p , is given by

Fig. 7 by a broken line and dotted line, respectively. The
membership function u, is given by

1 4,(u) = sup min {u (u)pug(v), 1= uh(v)}

velr

IU'A;(M):VSZIf/min{I‘LA(“)/*LB(V)’I—/'LB(V)} ‘ =ILA(U)VN31(“)+4_MA(“)
l\ _ ma(u) 2
T ) {B'=not B“’): The values of S,(1—u%’(v)) with a

{B'=not B? The values of S,(1—pj(v)) with a parameter (1), say u ()= 0.3 and 0.8, are indicated in
parameter p ,(u), say u 4(u)=0.3 and 0.8, are indicated in  Fig. 8 by a broken line and dotted line, respectively. The
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TABLE 1V
SUMMARY OF INFERENCE RESULTS FOR GENERALIZED MobDUSs TOLLENS
Not B Not Very B Not More or Less B B
V5-1 3-V5
R, 0.5A 14 > ALy 2‘ ARy My
R g /J.AV;Li+4—/.LA 2uq tl—ydp, +1
’ T+ p, 2 2p 4 Ha
1y N =2p+THdu, 3-T+u,
R 1-— _— _— I
“ 2 2 2
-1 3-V5
Ry 05v(I-py) (U=pdV|——An, 7 Vlmp) wa VU
Vs -1 3-y5
R, 05v(—py) 3 V(= p,) 5 v(l-=p) |
R, 1-py, 1- 4, 1= iq I
i Y1+dpl —1 2t pg— YL +ap, |
Ha 1+, 2ul 2
TABLE V
SATISFACTION OF VARIoUs Fuzzy IMpLicATION FuNcTiONs UNDER INTUITIVE CRITERIA
R(‘ Rp Ru Rm R,\’ RA Rh
Criteria 1 O O X X O X X
Criteria 2-1 X X X X O X X
Criteria 2-2 O O X X X X X
Criteria 3-1 X X X X @} X X
Criteria 3-2 O O X X X X X
Criteria 4-1 X X @] O @] O @]
Criteria 4-2 X X X X X X X
Criteria 5 X X X X O X X
Criteria 6 X X X X 0] X X
Criteria 7 X X X X O X X
Criteria 8-1 X X O X O O O
Criteria 8-2 O O X X X X X

membership function u,, is given by

p4,(u) = sup min {u (1) pg(v),1—pu%(v))

vevVv
2p(u)+1—4p,+4
2p,4(u) .

{B'= B): The values of S(ug(v)) with a parameter
 4(u), say . 4(u)= 0.3 and 0.8, are indicated in Fig. 9 by a
broken line and dotted line, respectively. The member-
ship function u ,, is given by

/—LA;(") = SUPI’/{I-‘«A(L‘)/—LB(V)’/"'B(V)}

= pq(u).

The remaining consequences [24] inferred by R,, R,
R,., R, Ry, R, can be obtained by the same method as
just described. The results are summarized in Tables II1
and IV.

By employing the intuitive criteria in Tables I and II in
Tables III and IV, we can determine how well a fuzzy
implication function satisfies them, [This information is
summarized in Table V.

In FLC applications, a control action is determined by
the observed inputs and the control rules, without the

consequent of one rule serving as the antecedent of
another. In effect, the FLC functions as a one-level for-
ward data-driven inference (GMP). Thus the backward
goal-driven inference (GMT), chaining inference mecha-
nisms (syllogisms), and contraposition do not play a role
in the FLC, since there is no need to infer a fuzzy control
action through the use of these inference mechanisms.

Although R, and R, do not have a well-defined logical
structure, the results tabulated in Table V indicate that
they are well suited for approximate reasoning, especially
for the generalized modus ponens.

R,, has a logical structure which is similar to R,. R, is
based on the implication rule in Lukasiewicz’s logic L zjeph-
However, R, and R, are not well suited for approximate
reasoning since the inferred consequences do not always
fit our intuition. Furthermore, for multiple-valued logical
systems, R, and R, have significant shortcomings. Over-
all, R, yields reasonable results and thus constitutes an
appropriate choice for use in approximate reasoning.

B. Interpretation of Sentence Connectives “and, also”

In most of the existing FLC'’s, the sentence connective
“and” is usually implemented as a fuzzy conjunction in a
Cartesian product space in which the underlying variables
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take values in different universes of discourse. As an

JMustration, in “if (A and B) then C,” the antecedent is

rpreted as a fuzzy set in the product space U XV,
with the membership function given by

e (1) = min {2 g(), 15(v))
or

Pasp(t,v) =i (1) pp(v)

with 4 and B, respectively.

When a fuzzy system is characterized by a set of fuzzy
control rules, the ordering of the rules is immaterial. This
necessitates that the sentence connective “also” shouid
have the properties of commutativity and associativity
(see sections III-A and III-C in Part I and Part D in this
section). In this connection, it should be noted that the
operators in triangular norms and co-norms possess these
properties and thus qualify as the candidates for the
interpretation of the connective “also.” In general, we use

‘ {
‘.
g ‘where U and V are the universes of discourse associated

“the triangular co-norms in association with fuzzy conjunc-

tion and disjunction, and the triangular norms in associa-
tion with fuzzy implication. The experimental results
[52]-[54], [96], [73] and the theoretical studies [18], [85],
[116], [19] relate to this issue.

Kiszka et al. [52] described a preliminary investigation

" the fuzzy implication functions and the sentence con-
.cctive “also” in the context of the fuzzy model of a dc
series motor. In later work, they presented additional
results for fuzzy implication functions and the connective
“also” in terms of the union and intersection operators
(53], [54].

Our investigation leads to some preliminary conclu-
sions. First, the connective “also” has a substantial influ-
ence on the quality of a fuzzy model, as we might expect.
Fuzzy implication functions such as R, R,, and R, with
the connective “also” defined as the union operator, and
R, R,, Ry, and R,, defined as the intersection, yield
satisfactory results. These fuzzy implication functions dif-
fer in the number of mathematical operations which are
needed for computer implementation.

Recently, Stachowicz and Kochanska [96] studied the
characteristics of 38 types of fuzzy implication along with
nine different interpretations (in terms of triangular norms
and co-norms) of the connective ‘“also,” based on various
forms of the operational curve of a series motor. Based
on their results, we tabulate in Table VI a summary of the
most appropriate pairs for the FLC of the fuzzy implica-
tion function and the connective “also.”

Additional results relating to the interpretation of the
connective “also” as the union and the intersection are
reported in [73]. The investigation in question is based on
. plant model with first-order delay. It is established that
the fuzzy implication functions R, R, R,,, R, with the
connective “also” as the union operator yield the best
control resuits. Furthermore, the fuzzy implications R,
and R, are not well suited for control applications even

TABLE VI
SuiTasLE PAIRS OF A Fuzzy IMPLICATION FUNCTION
AND CONNECTIVE “also”

. Impli_galioanule Connective Also

~ . R('R[)thR(lp ] ‘;' RV A
a n-on
" -
R.\'RAR;; (ﬂ '@ﬂ“
Ry, oM

“It depends on the shape of reproduced curve which forms the set of
fuzzy control rules.

though they yield reasonably good results in approximate
reasoning, :

From a practical point of view, the computational as-
pects of an FLC require a simplification of the fuzzy
control algorithm. In this perspective, Mamdani’s R, and
Larsen’s R, with the connective “also” as the union
operator appear to be better suited for constructing fuzzy
models than the other methods in FLC applications. We
will have more to say about these methods at a later
point.

C. Compositional Operators

In a general form, a compositional operator may be
expressed as the sup-star composition, where “star” de-
notes an operator—e.g., min, product, etc.—which is
chosen to fit a specific application. In the literature, four
kinds of compositional operators can be used in the
compositional rule of inference, namely:

sup-min operation [Zadeh, 1973],

sup—product operation [Kaufmann, 1975],
sup-bounded-product operation {Mizumoto, 1981],
sup—drastic-product operation [Mizumoto, 1981].

In FLC applications, the sup-min and sup-product
compositional operators are the most frequently used.
The reason is obvious, when the computational aspects of
an FLC are considered. However, interesting results can
be obtained if we apply the sup-product, sup-bounded-
product, and sup-drastic-product operations with differ-
ent fuzzy implication functions in approximate reasoning
{70}, [72). The inferred results employing these composi-
tional operators are better than those employing the
sup—min operator. Further investigation of these issues in
the context of the accuracy of fuzzy models may provide
interesting results.

D. Inference Mechanisms

The inference mechanisms employed in an FLC are
generally much simpler than those used in a typical expert
system, since in an FLC the consequent of a rule is not
applied to the antecedent of another. In other words, in
FLC we do not employ the chaining inference mecha-
nism, since the control actions are based on one-level
forward data-driven inference (GMP).

The rule base of an FLC is usually derived from expert
knowledge. Typically, the rule base has the form of a
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MIMO system

R={R\imo: Riamo»" " *» Riamo}
where Rijmo represents the rule: if (x is A4; and - - -,
and y is B,) then (z, is C;,» -+, z, is D,). The antecedent
of Rimo forms a fuzzy set A; X -+ X B; in the product
space U X -+ X V. The consequent is the union of ¢
independent control actions. Thus the ith rule Ri;uo
may be represented as a fuzzy implication

Rimmo: (4;X =+ X B)) = (24 -+ +2,)

from which it follows that the rule base R may be repre-
sented as the union

~={ U Riano)

i=1

{L")[(A,.x---><B,~)—>(z,+'~'+zq)]}

i=1

I

{O[(Arx X B) - z))],
i=1
' O[(Aix X By) o z5)],

i=1

Lnj [(A;x XB,.)—>zq)]}

i=1

9

= 1 2 e q
- {RBMISO’ RBMISO’ ’ RBMISO}'

In effect, the rule base R of an FLC is composed of a set
of sub-rule-bases RBi;so, With each sub-rule-base
RBi,so consisting of n fuzzy control rules with multiple
process state variables and a single control variable. The
general rule structure of a MIMO fuzzy system can there-
fore be represented as a collection of MISO fuzzy sys-
tems:

C-=

]

[(4;% -+ XBi)"Zk)]}
1

1

= 1 2 Ve q
R= {RBMISO’ RBMISO’ ’ RBMISO}

where RB¥y o represents the rule: if (x is A; and - - -,
and y is B,) then (z, is D,), i=1,2,--,n.

Let us consider the following general form of MISO
fuzzy control rules in the case of two-input /single-output
fuzzy systems:

input: xis A'and y is B’
Ry ifxis A, and yis B, then z is C,
also R,: if xis A, and y is B, then z is C,

also R,: ifxis A, and yis B, themrz isC,

zisC'

where x, y, and z are linguistic variables representing the

process state variables and the control variable, respec-
tively; A;, B;, and C; are linguistic values of the linguistic
variables x, y, and z in the universes of discourse U, V,
and W, respectively, with i=1,2,--+, n.

The fuzzy control rule “if (x is A; and y is B;) then (2

is'C,)” is implemented as a fuzzy implication (relation) R,

and is defined as
IU“R,élu'(A,and B,—-C‘,)(u")’w)
= [/J«A,.(U) and #B,(V)] ‘“’ﬂvc,(w)

where “A, and B,” is a fuzzy set A,X B; in U XV,
R;2(A; and B;)- C; is a fuzzy implication (relation) in
U XV X W;and — denotes a fuzzy implication function.

The consequence C' is deduced from the sup-star
compositional rule of inference employing the definitions
of a fuzzy implication function and the connectives “and”
and “also.”

In what follows, we shall consider some useful proper-
ties of the FLC inference mechanism. First, we would like
to show that the sup-min operator denoted by ° and the
connective “also” as the union operator are commutative.
Thus the fuzzy control action inferred from the complete
set of fuzzy control rules is equivalent to the aggregated
result derived from individual control rules. Furthermore,
as will be shown later, the same properties are possessed
by the sup—product operator. However, the conclusion in
question does not apply when the fuzzy implication is
used in its traditional logical sense [18], [19]. More specifi-
cally, we have

Lemma I: (A, B> U™ \R,= U™ (4, B)eR,
Proof:

n
C'=(A4,B) R,

i=1

n‘
=(A,B')e |J (A4;and B,~C,).

i=]

The membership function u. of the fuzzy set C’' is
pointwise defined for all w € W by

pe(W) = (pe(u),np(v))e ;r_lffv(uk,(u,v,W),
pp v, W), g (U,v,W))
= suugmin{(u,f(u),ugl(v)), max (e (v, ),
p U VW), ’/“LR"(uv‘)’w))}
e sup ,ff‘j}{i{min [(ra() s mp(v)s g (v, w)],
coeymin [ (g (), pp(v)s g (450, w)] )

= lg‘fﬁ [[(#A'(U)J—LB'(V))°P«R,(“’V’W)]a

o ’[(/J'A'(u)nu'B’(V))"/'LR,,(u7V7W)”'
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Therefore
C'={(A By R,JU[(A.B')°R,]
U U4, B) 2 R,

(

n
= J (A, B)R,

i=1

Il

H
U (A',B")o(A;and B, > C;)

i=1
EN

Lemma 2: For the fuzzy conjunctions R, R,, R,,, and

R,,, we have
(A',B")°(A; and B, - C;)
:[A"’(Ai"ci)]ﬂ[Bl°(Bi_’Ci)]
if Kaxp, = Ha, N Hp,
(A',B"}Ye(A, and B, > C,)
~ Ao ( 4= C)][B'+(B,>C)]
if pa,xp = Ha Hp,

Proof:
( C!=(A,B)(4;and B, > C))
/':'C,"-=(/'LA”:U"B’)°(/~“A,-XB,~_)/'LC,)
= (paopp)e(min(py,pmp) = te,)
= (o pip)omin (g = i)y (g = 1e,)]

= supmin {[ (s, ),

tH, v
-min[(p«,,i—’uc,)y(ﬂzs, _’#C,)“

= supmin {min [/‘LA"(.U'Ai - #c,)] )

min [ g (15, = 1e,)])
= min {[ 4 ° (g, > 1)) [ oo (s, = )]}

Hence we obtain
¢l = [A’°(Ai_’ci)] n[B,°(Bf’"’Ci)]-

Let us consider two special cases that follow from the
preceding lemma and that play an important role in FLC
applications.

Lemma 3: If the inputs are fuzzy singletons, namely,
A'=u,, B'=v,, then the results dervied by employing
*Mamdani’s minimum operation rule R, and Larsen’s

Sduct operation rule R, respectively, may be expressed
simply as

R
)R

Q.E.D.

o) Ape(w) R.:

p: aiA./J'C,(w) Rp:

a’: A I'LC,( W)
ai"#c,(w)

427

where o = p, () A py(vy) and ;= p,(ug) uy(vy).
Proof:

1) —_—— .
Cl=[Ae(A7>C)IN[B'(B;~C,)]

-

Rep = mi“{[ﬂn °(/LA,-(”) - Mc,(W))] )
[voe (ma(v) = ne(w))])
= min{[#%,(“o) - :U'C,»(W)] ) [:LLB,(VO) - #c,.(w)]]-
2
)Ci' =[A'(A4;>C)][B'=(B;~ ()]
ey = [0 (alw) > (w))] [voo (o (v) Sho(w))]
= [#A,-( ug) = I-Lc,.(W)] ) [.Uva,.( Vo) = l-'vc,.(w)] .

As wil! be seen in following section, the last lemma not
only simplifies the process of computation but also pro-

vides a graphic interpretation of the fuzzy inference -

mechanism in the FLC. Turning to the sup-product oper-
ator, which is denoted as -, we have the following,

n .
U 4, B)R,.

i=1

n
Lemma I': (A',B"): |JR;=

i=1
Lemma 2': For the fuzzy conjunctions R., R,, R,,,
and R,,, we have

(A',B")*(A; and B;,—C,)
=[4'(4,~C)IN[B(B;—~ ()]
if paxs =Ha, N Hp,
(A',B")+(A; and B, ~ C,;)
=[A4(4;,->C)] [B'+(B;— C)l
if Ma;xB;, = Mg tp;-
Lemma 3: If the inputs are fuzzy singletons, namely,
A'=u,, B'=v,, then the results derived by employing
Mamdani’s minimum operation rule R, and Larsen’s
product operation rule R, respectively, may be expressed
simply as
R_:
R

R.:
R

aiApc(w)

Pt P«C,.( w)

a* Apc(w)
P aiA',ch,-(W)
where a = u (1)) A pg(vy) and ;= p,(ug) (Vo).

Therefore we can assert that
n

U a; A,

i=1

n

U a;' e,

i=1

where the weighting factor (firing strength) «; is a mea-
sure of the contribution of the ith rule to the fuzzy
control action. The weighting factor in question may be
determined by two methods. The first uses the minimum
operation in the Cartesian product, which is widely used
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Fig. 11. Graphical interpretation of Lemma 2 under a" and R,,.

“in FLC applications. The second employs the algebraic

product in the Cartesian product, thus preserving the
contribution of each input variable rather than the domi-
nant one only. In this respect, it appears to be a reason-
able choice in many FLC applications.

For simplicity, assume that we have two fuzzy control
rules, as follows:

Ry: if xis A, and y is B, then z is C|,
R,: if xis A, and y is B, then z is C,.

Fig. 10 illustrates a graphic interpretation of Lemma 2
under R, and «;*. Fig. 11 shows a graphic interpretation
of Lemma 2 under R, and «;".

In on-line processes, the states of a control system play
an essential role in control actions. The inputs are usually
measured by sensors and are crisp. In some cases it may
be expedient to convert the input data into fuzzy sets. In
general, however, a crisp value may be treated as a fuzzy
singleton. Then the firing strengths «, and a, of the first

and second rules may be expressed as
a;=p (x0) A p(ye)
ay = (%0) A g ¥o)

where p4(x,) and ug(y,) play the role of the degrees of
partial match between the user-supplied data and the
data in the rule base. These relations play a central role
in the four types of fuzzy reasoning currently employed in
FLC applications, and are described in the following.

1)  Fuzzy Reasoning of the First Type — Mamdani’s Min-
imum Operation Rule as a Fuzzy Implication Function:
Fuzzy reasoning of the first type is associated with the use
of Mamdani’s minimum operation rule R. as a fuzzy
implication function. In this mode of reasoning, the ith
rule leads to the control decision

pe, (W) = a; A pe(w)

which implies that the membership function u. of the
inferred consequence C is pointwise given by

pe(w)=pe Ve
= [ Ane(W] V@ Auc(w)].




2

Fig. 13.

To obtain a deterministic control action, a defuzzifica-
tion strategy is required, as will be discussed at a later
point. The fuzzy reasoning process is illustrated in Fig. 12,
which shows a graphic interpretation of Lemma 3 in
terms of Mamdani’s method R..

2) Fuzzy Reasoning of the Second Type— Larsen’s
Product Operation Rule as a Fuzzy Implication Function:
Fuzzy reasoning of the second type is based on the use of
Larsen’s product operation rule R, as a fuzzy implication
function. In this case, the ith rule leads to the control
decision

MC,’(W) = ai’l-‘c,(w)-

Consequently, the membership function p. of the in-
ferred consequence C is pointwise given by

pe(W) =pe Ve
= [a,-ucl(w)] v [az'#cz(w)]~

From C, a crisp control action can be deduced through
the use of a defuzzification operator. The fuzzy reasoning

Diagrammatic representation of fuzzy reasoning 2.

process is illustrated in Fig. 13, which shows a graphic
interpretation of Lemma 3 in terms of Larsen’s meth-
od R,.

3) Fuzzy Reasoning of the Third Type— Tsukamoto's
Method with Linguistic Terms as Monotonic Membership
Functions: This method was proposed by Tsukamoto [117].
It is a simplified method based on the fuzzy reasoning of
the first type in which the membership functions of fuzzy
sets A;, B;, and C; are monotonic. However, in our
derivation, 4; and B, are not required to be monotonic
but C; is.

In Tsukamoto’s method, the result inferred from the
first rule is «, such that «, = C(y,). The result inferred
from the second rule'is a, such that a, = Cy(y,). Corre-
spondingly, a crisp control action may be expressed as the
weighted combination (Fig. 14)

a ) tazy,
Zy=—.
a +a,

4) Fuzzy Reasoning of the Fourth Type—The Conse-
quence of a Rule is a Function of Input Linguistic Varigbles:
Fuzzy reasoning of the fourth type employs a modified
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version of state evaluation function. In this mode of
reasoning, the ith fuzzy control rule is of the form

R;: if(xis A;, -
where x,---, y, and z are linguistic variables represent-
ing process state variables and the control variable, re-
spectively; A4,,-- -, B; are linguistic values of the linguistic
variables x,---,y in the universes of discourse U, -,V
respectively, with i =1,2,-- -, n; and f; is a function of the
process state variables x,- -,y defined in the input sub-
spaces. ~

For simplicity, assume that we have two fuzzy control
rules as follows:

R,: ifxis A, and y is B, then z = f|(x,y)
R,:

The inferred value of the control action from the first rule
is a, f(xq,y0). The inferred value of the control action
from the second rule is a, f,(xg,y,). Correspondingly, a
crisp control action is given by

_ a\fl(xo’)’o) + ay f,( %95 Y)
a)+a, '

and y is B;) then z = fi(x," "+, y)

if xis A, and y is B, then z = f,(x,y).

Zy

This method was proposed by Takagi and Sugeno [103]
and has been applied to guide a model car smoothly aiong
a crank-shaped track [98] and to park a car in a garage
[97], [99].

1L

Basically, defuzzification is a mapping from a space of
fuzzy control actions defined over an output universe of
discourse into a space of nonfuzzy (crisp) control actions.
It is employed because in many practical applications a
crisp control action is required.

A defuzzification strategy is aimed at producing a non-
fuzzy control action that best represents the possibility
distribution of an inferred fuzzy control action. Unfortu-
nately, there is no systematic procedure for choosing a
defuzzification strategy. Zadeh [142] first pointed out this
problem and made tentative suggestions for dealing with

DEFUZZIFICATION STRATEGIES

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 20, NO. 2, MARCH /APRIL 1990

it. At present, the commonly used strategies may be
described as the max criterion, the mean of maximum,
and the center of area.

A. The max criterion method

The max criterion produces the point at which the

possibility distribution of the control action reaches a

maximum value,

B. The Mean of Maximum Method (MOM)

The MOM strategy generates a control action which

represents the mean value of all local control actions
whose membership functions reach the maximum. More
specifically, in the case of a discrete universe, the control
action may be expressed as

3y =

i~

]
j=1 !
where w; is the support value at which the membership
function reaches the maximum value u,(w)), and [ is the

number of such support values.

'C. The Center of Area Method (COA)

The widely used COA strategy generates the center of
gravity of the possibility distribution of a control action.
In the case of a discrete universe, this method yields

n
Z 1 Wj) ‘W
zg= L ————
j=1
where n is the number of quantization levels of the
output.

Fig. 15 shows a graphical interpretation of various
defuzzification strategies. Braae and Rutherford [5] pre-
sented a detailed analysis of various defuzzification
strategies (COA, MOM) and concluded that the COA
strategy yields superior results (also see [58]). However.
the MOM strategy yields a better transient performance
while the COA strategy yiclds a better steady-state per-
formance [94]. It should be noted that when the MOM
strategy is used, the performance of an FLC is similar tc
that of a multilevel relay system [48], while the CO2
strategy yields results which are similar to those obtain
able with a conventional PI controller [46]. An FLC basec
on the COA generally yields a lower mean square erro
than that based on the MOM [111]. Furthermore, th
MOM strategy yields a better performance than the Ma.
criterion strategy [52].

III. ArpLiCATIONS AND RECENT DEVELOPMENTS

A. Applications

During the past several years, fuzzy logic has foun
numerous applications in fields ranging from finance t
earthquake engineering [62]. In particular, fuzzy contrc
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. has emerged as one of the most active and fruitful areas

}'
i

for research in the application of fuzzy set theory. In
many applications, the FLC-based systems have proved to
be superior in performance to conventional systems.
Notable applications of FLC include the heat exchange
{80], warm water process [47], activated sludge process
[113], [35), traffic junction [82], cement kiln [59], [118},
aircraft flight control [58], turning process [92], robot
control {119], [94], [106], [8], [34], model-car parking and
turning [971-[99], automobile speed control [74], [75], wa-
ter purification process [127], elevator control [23], auto-
mobile transmission control [40], power systems and nu-
clear reactor control [4], [51], fuzzy memory devices [107],
[108], [120], [128], {129}, [133], and the fuzzy computer
[132]. In this connection, it should be noted that the first
successful industrial application of the FLC was the ce-
(1t kiln control system developed by the Danish cement
pant manufacturer F. L. Smidth in 1979. An ingenious
application is Sugeno’s fuzzy car, which has the capability
of learning from examples. More recently, predictive fuzzy
control systems have been proposed and successfully ap-
plied to automatic train operation systems and automatic
container crane operation systems [135]-{139]. In parallel
with these developments, a great deal of progress has
been made in the design of fuzzy hardware and its use in
so-called fuzzy computers [132].

B. Recent Developments

1) Sugeno’s Fuzzy Car: One of the most interesting
applications of the FLC is the fuzzy car designed by
Sugeno. Sugeno’s car has successfully followed a crank-
shaped track and parked itself in a garage [98]-[99].

The control policy incorporated in Sugeno’s car.is rep-
resented by a set of fuzzy control rules which have the
form:

R,: if xis A;, -+ and y is B; then
z=al+alx+ - +aly
where x,'--, and y are linguistic variables representing

the distances and orientation in relation to the bound-
aries of the track; A, -, and B; are linguistic values of
j+++, and y; z is the value of the control variable of the
ith control rule; and ai,** -, and a, are the parameters
entering in the identification algorithm [103], [99].
The inference mechanism of Sugeno’s fuzzy car is based

on fuzzy reasoning of the fourth type, with the parameters
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TABLE VI
Fuzzy ConTROL RULES FOR INVERTED PENDULUM BALANCING
Angle
_ NL RM NS ZR PS PM PL
NLoo_
NM
Change NS NS ZR
of ZR NM ZR PM
Angle  PS ZR Ps .
PM
PL
af), -+, and 4/, identified by training. The training process

involves a skilled operator who guides the fuzzy model car
under different conditions. In this way, Sugeno’s car has
the capability of learning from examples.

2) FLC Hardware Systems: A higher-speed FLC hard-
ware system employing fuzzy reasoning of the first type
has been proposed by Yamakawa [130], [131]. It is com-
posed of 15 control rule boards and an action interface
(i.e., a defuzzifier based on the COA). It can handle fuzzy

linguistic rules labeled as NL, NM, NS, ZR, PS, PM, PL.

The operational speed is approximately 10 mega fuzzy
logical inferences per second (FLIPS).

The FLC hardware system has been tested by an appli-
cation to the stabilization of inverted pendulums mounted
on a vehicle. Two pendulums with different parameters
were controlled by the same set of fuzzy control rules
(Table VII). It is worthy of note that only seven fuzzy
control rules achieve this result. Each control rule board
and action interface has been integrated to a 40-pin chip.

3) Fuzzy Automatic Train Operation (ATO) Systems:
Hitachi Ltd. has developed a fuzzy automatic train opera-
tion system (ATO) which has been in use in the Sendai-
City subway system in Japan since July 1987..In this
system, an object evaluation fuzzy controller predicts the
performance of each candidate control command and
selects the most likely control command based on a skilled
human operator’s experience. ’

More specifically, fuzzy ATO comprises two rule bases
which evaluate two major functions of a skilled operator
based on the criteria of safety, riding comfort, stop-gap
accuracy, traceability of target velocity, energy consump-
tion, and running time. One is constant-speed control
(CSC), which starts a train and maintains a prescribed
speed. The other is the train automatic stop control
(TASC), which regulates a train speed in order to stop at
the target position at a station. Each rule base consists of
twelve object-evaluation fuzzy control rules. The an-
tecedent of every control rule performs the evaluation of
train operation based on safety, riding comfort, stop-gap
accuracy, etc. The consequent determines the control
action to be taken based on the degree of satisfaction of
each criterion. The control action is the value of the train
control notch, which is evaluated every 100 ms from the
maximal evaluation of each candidate control action, and
it takes as a value a discrete number; positive value means
“power notch,” negative value means “break notch.”
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The Sendai-City subway system has been demonstrated
to be superior in performance to the conventional PID
ATO in riding comfort, stop gap accuracy, energy con-
sumption, running time, and robustness [135], [136], [139].

4) Fuzzy Automatic Container Crane Operation (ACO)

employs MAX and MIN operations, which are imple-
mented by the emitter coupled fuzzy logic gates (ECFL
gates) in voltage-mode circuit systems. The linguistic in-
puts, which are represented by analog voltages distributed
on data -buses, are fed into each inference engine in

Systems: In the application of FLC to the automatic oper-~-parallel. The results inferred from the rules are aggre-

ation of container-ship loading cranes, the principal per-
formance criteria are safety, stop-gap accuracy, container
sway, and carrying time. S

Fuzzy ACO involves two major operations: the trolley
operation and the wire rope operation. Each operation
comprises two function levels: a decision level and an
activation level. Field tests of fuzzy ACO systems with
real container cranes have been performed at the port of
Kitakyusyu in Japan. The experimental results show that
cargo handling ability of Fuzzy ACO by an unskilled
operator is more than 30 containers per hour, which is
comparable to the performance of a veteran operator.
The tests have established that the fuzzy ACO controller
has the capability of operating a crane as safely, accu-
rately, and skillfully as a highly experienced human opera-
tor [137]-[139].

5) Fuzzy Logic Chips and Fuzzy Computers: The first
fuzzy logic chip was designed by Togai and Watanabe at
AT&T Bell Laboratories in 1985 [107). The fuzzy infer-
ence chip, which can process 16 rules in parallel, consists
of four major parts: a rule-set memory, an inference-
processing unit, a controller, and an input—output cir-
cuitry. Recently, the rule-set memory has been imple-
mented by a static random access memory (SRAM) to
realize a capability for dynamic changes in the rule set,
The inference-processing unit is based on the sup—min
compositional rule of inference. Preliminary timing tests
indicate that the chip can perform approximately 250000
FLIPS at 16-MHz clock. A fuzzy logic accelerator (FLA)
based on this chip is currently under development [108],
[120]. Furthermore, in March 1989 the Microelectronics
Center of North Carolina successfully completed the fab-
rication of the world’s fastest fuzzy logic chip, designed by
Watanabe. The full-custom chip comprises 688000 tran-
sistors and is capable of making 580000 FLIPS.

In Japan, Yamakawa and Miki realized nine basic fuzzy
logic functions by the standard CMOS process in
current-mode circuit systems [128]. Later, a rudimentary
concept of a fuzzy computer was proposed by Yamakawa
and built by OMRON Tateishi Electric Co. Ltd [132]. The
Yamakawa-OMRON computer comprises a fuzzy mem-
ory, a set of inference engines, a MAX block, a defuzzi-
fier, and a control unit. The fuzzy memory stores lin-
guistic fuzzy information in the form of membership
functions. It has a binary RAM, a register, and a member-
ship function generator [128]. A membership function
generator (MFG) consists of a PROM, a pass transistor
array, and a decoder. Every term in a term set is repre-
sented by a binary code and stored in a bifiary RAM. The
corresponding membership functions are generated by
the MFG via these binary codes. The inference engine

gated by a MAX block, which implements the function of
the connective “also” as a union operation, yielding a
consequence which is a set of analog voltages distributed
on output lines. In the FLC applications, a crisp control
command necessitates an auxiliary defuzzifier. In this
implementation, a fuzzy computer is capable of process-
ing fuzzy information at the very high speed of approxi-
mately 10 mega-FLIPS. It is indeed an important step not
only in industrial applications but also in common-sense
knowledge processing.

IV. FuUTuURE STUDIES AND PROBLEMS

In many of its applications, FLC is either designed by
domain experts or in close collaboration with domain
experts. Knowledge acquisition in FLC applications plays
an important role in determining the level of performance
of a fuzzy control system. However, domain experts and
skilled operators do not structure their decisionmaking in
any formal way. As a result, the process of transferring
expert knowledge into a usable knowledge base of an
FLC is time-consuming and nontrivial. Although fuzzy
logic provides an effective tool for linguistic knowledge,
representation and Zadeh’s compositional rule of infer-
ence serves as a useful guideline, we are still in need of;
more efficient and more systematic methods for knowl-
edge acquisition.

An FLC based on the fuzzy model of a process is
needed when higher accuracy and reliability are required.
However, the fuzzy modeling of a process is still not well
understood due to difficulties in modeling the linguistic
structure of a process and obtaining operating data in
industrial process control [13), [84], [111], [125], [104],
[101].

Classical control theory has been well developed and
provides an effective tool for mathematical system analy-
sis and design when a precise model of a system is
available. In a complementary way, FLC has found many
practical applications as a means of replacing a skilled
human operator. For further advances, what is needed at
this juncture are well-founded procedures for system de-
sign. In response to this need, many researchers are
engaged in the development of a theory of fuzzy dynamic
systems which extends the fundamental notions of state
[6], controllability [31], and stability [77], [44], [89], [55].

Another direction of recent exploration is the concep-
tion and design of fuzzy systems that have the capability
to learn from experience. In this area, a combination of
techniques drawn from both fuzzy logic and neural net-
work theory may provide a powerful tool for the design of
systems which can emulate the remarkable human ability
to learn and adapt to changes in environment.
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MARKET FACTS

imulating human reasoning could prove quite lucrative
for companies working with neural networks and fuzzy
logic. Market Intelligence Research Corp. expects total
revenues for neural networks and fuzzy logic combined to
grow from $300 million last year to $10 billion by 1998. MIRC forecasts
compound annual revenue growth of about 656% in its report, Imitating
Human Reasoning: the Viability and Commercialization of Neural
Networks and Fuzzy Logic.

Fuzzy logic is intended to develop multivalued rather than binary
logic than can simulate human response to continuous rather than
discrete choices. Neural networks focus on simulating the high connec-
tivity between the many cells making up the human brain, Of the two,
fuzzy logic will grow more rapidly until mid-decade, when neural
networks will recapture the lead in growth rate.

Japan is prevailing in fuzzy logic technology, having applied itin at
le ™00 applications. In consumer electronics, some video cameras
us gy logic for focusing. In neural networks, Japan is expected to
be a strong competitor with the U. S. For its part, Europe is playing
catch-up, but major players Philips, Siemens, and Thomson are moving
into both areas.

Standard software and ICs are expected to displace engineering
development tools and customer applications as product segments.
Neural networks are working their way into financial and industrial
environments; in the U. S, the military continues to fund neural net-
work applications. In fuzzy logic, industrial and automotive applica-
tions are predicted to overtake the consumer electronics segment.

STRONG GROWTH FOR NEURAL
~ NETWORKS AND FUZZY LOGIC

ELECTRONTIC

HOT PGC PRODUGTS

ost 486SX-based PCs were built with a vacant upgrade

socket. Until now, there was no upgrade part to fill that

vacancy. The OverDrive processors from Intel, which fit

into the empty socket, increase performance up to 70%.
The part is currently available in two versions, one for 16- and 20-MHz
systems and one for 25-MHz systems. Unlike a math coprocessor, the
part improves both floating-point and integer performance on all
DOS, Windows, 0S/2, and Unix applications. The processor is based on
the Intel’s DX2 speed-doubling technology, where the internal clock
rate is twice that of the external rate.

In most cases, however, installing the processor doesn’t require any
modifications to the computer. The company says that users should be
able to install the OverDrive processor in five minutes. The 16/20-
MHz part sells for $549 and the 25-MHz version costs $699. A 486DX
part will be available in the fall and a DX2 part should appear in early
1993. Contact Intel Crop., 3065 Bowers Ave, Santa Clara, CA 95051;
(800) 538-3373. CIRCLE 481

kit that enables engineers to implement fuzzy logic on
Motorola microcontrollers has a version of FIDE, a fuzzy
inference development environment Motorola developed
with Aptronix. The basic kit, for $195, has a computer-
based course that teaches users how to apply fuzzy logic to their
applications, an introductory version of FIDE, related software, and
documentation, For board-level, in-circuit emulation, a $600 kit in-
cludes an M68HCOSEVM emulator (through August). Users need a PC
AT or compatible with one floppy drive, a 40-Mbyte hard drive, VGA
monitor, DOS 3.30 with Windows 3.0, though DOS 5.0 is recommended.
Contact Motorola’s Microprocessor and Memory Technologies Group,
6501 William Cannon Dr, W, Austin, TX 78735-8598. CIRCLE 482

INC has reduced the price of its DOS-based PLDesigner
System 200 to $495 (from $1,950) and its System 300 to
$795 (from $2,950) through August The System 200,
though an entry-level system, has MINC's high-level
Design Synthesis Language, functional simulation, and automatic de-
vice selection and device fitting. System 300 can implement multiple-
device designs. Optional interfaces link the software to PC-based
schematic capture systems. Contact MINC, 6755 Earl Dr., Colorade
Springs, CO 80918; (719) 590-1155. CIRCLE 483

long similar lines, Actel Corp. has cut the price by one-
third of its Action Logic System (ALS) Release 2.1. The
system is used to design and program the company’s Act 1
and 2 field-programmable gate arrays. Release 2.1 is a
complete FPGA design, debugging, and programming system for the
Act 1 and 2 devices. The system supplies automatic placement and
routing for the devices, along with in-circuit diagnosties, minimizing
design verification, For PCs, Act 1 goes for $1995, Act 2 for $3495. For
Sun systems, Act 1 goes for $3995, Act 2 for $5495. CIRCLE 484
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FrROM THE 1ARGEST MROM TO THE FASTEST
FIFO, COUNT ON SHARP TO DELIVER.

either a X 8 or X 16 configura-
tion. It’s one in a new line of
MROMs using Sharp’s NOR
flat-cell technology to achieve

in MROM production, world-
wide, with an amazing 350 mil-
lion chips sold since 1979.

The pursuit of greater densities
— and new applications —
drives Sharp just as it does sys-
tem designers.

The new LH543620, for
example, is a 1024 x 36 unidi-
rectional FIFO with the most
fully synchronous set of features
available, including five pro-
grammable flags, independently
synchronized operation of

faster speeds, higher densities,
lower operating voltages and
better manufacturability.

input/output ports, and dupli-
cate enables at each end. Full
word-width and fast cycle times
qualify the LH543620 for even
the most high-end instrumenta-
tion, DSP and data communica-
tions system applications.

Sharp is now proud to offer
the world’s largest Mask ROM
— the 32 Mb LH5332000 —
with a 200 ns access time in
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IMAGINATION AT WORK SHARP IN THE U.S.A.
precision pro-
SHARP AND INTEL cessing of elec. | From its new IC DESIGN IN W ASHINGTON
FORGE FLASH MEMORY tronic compo- production and BENEFITS U.S MANUFACTURERS.
PARTNERSHIP. nents improves | research facility
yields via Class | in Camas, Washington, Sharp American manufacturers, 7

News of an historic alliance
between Sharp and Intel,
announced in March, focused
attention on Sharp’s Fukuyama
plant in Hiroshima, Japan,
where Intel’s flash memoty
products will be manufactured.
Fukuyama’s CIM (Computer
Integrated Manufacturing) system
is the industry’s most advanced,
using software designed at Sharp’s
R&D hub in Camas, Washington,
to enable a superlean manufac-
turing and quality control envi-
ronment virtually untouched
by human hands. The use
of robotics for submicron-
level, ultra-high-

Why Camas? A suppottive
business climate, skilled labor
pool and geophysical advantages
— including excellent ground
water quality, essential for a
future waferfab
— all made
the Southwest
Washington site
a natural.

has the ability to promptly
develop application-specific
ICs and new processing tech-
nologies to match the unique
requirements of North

1 clean room standards.

Intel will also benefit from
Sharp’s $800 million investment
in a third, 8” wafer, .5 micron
feature size semiconductor pro-
duction line at Fukuyama, sched-
uled to go on line in July 1992.
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Department of Electrical Engineering, FT-10;
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July 7, 1991

TO: TIE Office, TIE Students & Campus Students of EE595.
FROM: Robert J. Marks II
SUBJECT:  Course Project

EES95 PROJECT

You are to read one or more papers in fuzzy systems from a scholarly journal or
conference Proceedings.* Two "short" papers (such as letters to the editor) will be
considered as a single paper. Your knowledge of the paper will be tested in two ways:

1. A one page type written summary of the paper
2. A short oral presentation before the class.
A complete xerox copy of the paper you wish to present will be due in class on
. Those who hand in the sheet late will, at minimum, be

chosen to go first. This sheet will be stapled to the paper copy. Please fill out the
following information:

your name

author(s)

paper title

Journal name

volume . pages - . year

In case of duplication of papers, one entry will be asked to change. If no consensus can
be reached, this will be determined by a flip of the coin.

Immediately prior to your presentation, be prepared to give the instructor a copy
of of you summary stapled to a complete copy of the paper. For both the written and oral
presentations, you will be graded on the clarity of your presentation.

Suitable journals include IEEE Transactions on Systems, Man & Cybernetics,
IEEE Transactions on Neural Networks, IEEE Transactions on Patern Analysis &
Machine Intelligence, Fuzzy Sets & Systems and, The International Journal of
Approximate Reasoning. Magazines, such as Expert and IEEE Spectrum are not
suitable. Neither are lay publications like Scientific American and Omni. Paper
collection volumes, such as Fuzzy Models for Pattern Recognition (Bezdek & Pal,
IEEE Press, 1992) are excellent sources of classic papers. Many conference records,
such as Proceedings of ‘92 FUZZ-IEEE (IEEE Press) contain suitable papers.

* Innovative projects concerning fuzzy systems may be proposed in lieu of a paper review,



Points for a Good Oral Presentation

1. There is no substitute for experience. Practice your presentation with a critical friend.
2. Be enthusiastic. To be enthusiastic, act enthusiastic. Modulate your voice. Smile.

3. A presentation that runs overtime is a bad presentation. Except for rare exceptions, no
one listens to you after your time has expired. Their attention is on the clock and
other things. If there is to much material to present, only present the most

important points.

4. Present concepts and not a lot a math. Communicate with English - not equations. Do
not read equations.

5. Use your overhead transparencies (or slides) as your notes. Don’t read your slides.
Don’t read your presentation.

6. Any good oral presentation has three parts:
(a) Introduction: (tell them what you’re going to tell them.)
(b) Body: (tell them.)
(c) Conclusion: (tell them what you told them.)



Fuzzy Models for Pattern Recognition
Methods That Search for Structures in Data

Edited by
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Project Description for EE499 or EE599

Robert J. Marks I1I

There are six tapes available from IEEE on Fuzzy Systems.

Lotfi Zadeh, “Advanced Concepts and Structures”
Enrique Ruspini, “Introduction to Fuzzy Set Theory and Fuzzy Logic”

James C. Bezdek, “Fuzzy Logic and Neural Networks for Pattern Recog-
nition” ‘

James Keller, “Fuzzy Logic and Neural Networks for Computer Vision”

" Hamid R. Berenji, “Fuzzy Logic and Neural Networks for Control Sys-

tems” , ,

Piero Bonissone, “Information Processing with Fuzzy Logic”

For one credit, choose five of these tapes. For each tape, write a review
of the presentation and contents. The review should read similar to a book
review. There is no specified length of the review. It should be long enough
to summarize the contents and provide an overall critique.

The tapes will be available from Ruth Wagner Bennett for two night
check out. VCR/’s are available in the undergraduate library.
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Fuzzy Control Systems:
Clear Advantages

Michael Reinfrank

Since 1987 the Japanese city of
Sendai has had a driveriess subway
system that is automatically oper-
ated by a so-called fuzzy control-
ler. Whereas in Europe the term
“fuzzy” has long aroused negative
associations, the Japanese are in-
creasingly embracing the concept
and applying it. For instance, fuzzy
logic can decide on the optimum
time for a car to shift gears, can
manage the amount of suction
needed by a vacuum cleaner, and
can even limit subject movement in
video cameras. But now the fuzzy
wave has also reached Europe.

Fuzzy Control

What is a fuzzy controller? As
far as the operation of a subway
system is concerned, the problem
can be simplified as follows: the
positions of accelerator lever and
brake lever must be determined on
the basis of available measured
data {e.g. current speed, position)
and desired targets {e.g. required
speed curve). Basically, there are
three possible ways of achieving
this (Fig. 1). The most widespread
method is that of manual opera-
tion, i.e. the translation of mea-
sured data and target requirements
into acceleration and braking ac-
tions by the driver, If, however, we
wish to automate this operation
{one possible way of increasing the
frequency of trains in local public

Dr. Michael Reinfrank,
Siemens AG,

Corporate Research and
Development,

Munich, Germany

transport), the classical approach is
based on the following principle:
mathematical models are used to
provide as accurate a description as
possible of the technical process
controlled by the driver, and this
model is then used as the basis for
algorithmic methods, such as so-
called PID controllers. Conversely,
with fuzzy control, it is not the
technical system that is modeled,
but the manner in which a human
process controller acts, i.e. how
the driver drives the train.

But how is a subway train driven?
Interviews with drivers and techni-
cians result in the formulation of
rules such as the following: If the
train is a short distance from the
station and is traveling at average
speed, then an average braking
force is required.

A central problem in this respect
is the term “average speed,” which
must be described in formal terms
so that such a rule can be processed
in a computer. The first possible
solution to this problem is shown in
Figure 2: the normal speed range
of a subway train is broken down
into sections in each of which a
clear definition is made: yes, 40
km/h is an average speed or no, 39
km/hisnotanaverage speed. Sucha
solution entails two problems. No
subway driver or technician is able
with certainty to draw a precise di-
viding line between what is and
what is not an average speed. Even
if such unambiguously defined
limits were available, controls
based on these would result in a
jerky ride at the points of transition
between one speed range and the

next, since the above rule, for
example, is not applied at all at
39 km/h but is wholly enforced at
40 kmw/h.

This is where fuzzy logic and fuz-
zy control enter the picture. Such
systems make it possible to pro-
duce a gradual transition in speed,
as shown in Figure 2. There are
speed ranges in which the question
“Is this an average speed?” can be
clearly answered with yes or no;
the transitions between ranges,
however, are fluid or fuzzy. A
speed of 40 km/h corresponds only
to a certain extent to a subway
driver’s concept of an average
speed — and only to that extent will
a rule responding to such a speed
be satisfied and applied. It is im-
portant to note that fuzzy controt
does not necessarily have anything
to do with fuzzy data, but with fuz-
zy control concepts used in the pro-
cessing of data — of both the fuzzy
and non-fuzzy kind.

Typically, a fuzzy control con-
sists of 20 to 100 such rules that are
run through in a loop. Measured
data and reference variables are in-
putted into the control at defined
intervals; the output from the con-
trol comprises control actions or
manipulated variables derived us-
ing these rules. Consequently, a
fuzzy controller is a real-time ex-
pert system used in process auto-
mation that employs fuzzy logic in
order to represent qualitative vari-
ables. Both the gradual decision-
making functions and the rules and
their execution are coupled to very
elementary operations, which pro-

vides the basis for specific software

and hardware support (fuzzy
chips), and thus permits efficient,
real-time-capable solutions. Con-
sidering fuzzy controllers as real-
time expert systems, their relation
to neuronal networks is of particu-
lar interest. Both systems are
based on the same principle: they
attempt to model human thought
processes and, in particular, the
soft decisions that occur in such

aent, Of
ngineet- |
g are {re-
1n the |
these will
tant fields |
OntI'OL
jasis, how- ‘
\iso be seel
jefition with |
| ¢ i the
ontrol Y8 ‘
This 15 a0
ol frequent” |
g ag TCgATds
{ion of A8 1&
jmplemente-
ace, fuzzy €O

0a SmOOth and
ner;

o5 to make 40
s, whereas O
s require SO

be

gysters FO. .
ng [zaf flexibilty
short pexiods:

b ntional controls

bnsively

1s. ‘
Dconducted n %%

by revealed OV
pstrial applicrc\*uons1 0 :
with the oxgerwk:le i

‘o in Japam.

o comptehenswe
obs market




EE400: Introduction to Fuzzy Systems

- Fuzzy Inference Engines

Robert J. Marks II

1 Inference Engines

1.1 Introduction

The fuzzy inference engine is the foundation of most fuzzy expert systems and control systems. From a
linguistic description of cause and effect of a process, a fuzzy inference engine can be designed to emulate

the process.

1.2 Fuzzy If-Then Rules

Cause and effect statements of a process are stated through if-then rules. Consider the following pedi-
gogical example wherein the success of an undergraduate as a graduate student is inferred through
consideration of their undergraduate grade point averages (GPA’s) and their performance on the GRE

analytic test.

e [F an undergraduate’s GPA is high AND their GRE score is high, THEN an undergraduate
student will make an excellent graduate student,

o OR, IF

— their GPA is high AND their GRE score is fair,
— OR their GPA is fair AND their GRE score is high.

THEN an undergraduate student will make a good graduate student,

o OR IF their GPA is fair AND their GRE score is fair, THEN an undergraduate studeﬁt will make
an average graduate student,

e OR, OTHERWISE, the undergraduate student will make a poor graduate student,

Note, first, the operations of IF, THEN, AND and OR. Each can be interpreted in a fuzzy sense.
The fuzzy linguistic variables are written in bold. These rules can be simplified using the following
linguistic variable abbreviations.

for
for
for
for
for
for
for

lav Bl lNo v I ep Mo o -3

average,
excellent
fair
good
high,
low,
poor



The If-Then Rules can then be written as

If GPA s H And GRE is H, Then E ¢
Or,If [GPAisF And GRE s H,

OrGPAisH And GRE is F], Then G
Or,If GPAisF And GRE s F, Then A

Or,If [GPAisP
OR GRE is P}, Then P

The If portions of these statements are referred to as antecedents. The Then portions are the conse- -
quents.

1.2.1 Fuzzy Numerical Interpretation of the Antecedent

The first step in building the fuzzy inference engine is quantification of the linguistic variables using fuzzy A
membership functions. Consider again our example about students. Possible membership functions for-
low, high and very high are shown at the top of Figure 1. The ‘low’ membership function is denoted
by u1,.GRE(S) where S is the GRE score. Similarly, the ‘fair’ and ‘high’ membership functions are
pp.gRE(S) and pg.gRE(S). The midpoint of “fair’ is at a score of 700. The higher the score, the
greater the membership 1n ‘excellent’ scores.

Similarly, three membership fuctions for low, fair and high undergraduate GPA’s is shown in the
center of Figure 1. They are, repectively, uy_gpa(G), sp.gpa(G) and PH-GPA(G) where G is the
GPA.

Given the GPA and GRE score of a student, the definitions of each of the antecedents can be evaluated
using these membership definitions. To illustrate, suppose the GRE score of Student X is 720. Wlth
reference to the top of Figure 2, the following GRE membership functions are ascertained. ‘

HL-GRE(720) =0

br.GRE(720) = 0.8

PH-GRE(720) = 0.2
If Student X has an undergraduate GPA of 3.7, the corresponding membership functions have values of

ML-GPA(3.7) =0

BF.GPA(3T) =06
BH-GPA(3.7) = 0.4.

Assume the minimum operation if used for the fuzzy ‘and’. (Other fuzzy intersetion and union operations‘
can also be used.) Then the the composite membership for the antecedent, GPA is H And GRE is H, is

AGPA is H And GRE s B = min{ug.gpA(3.7), #E-GRE(720)
min(0.4,0.2)

0.2

i

The consequent for a G graduate student is a bit longer

M[GPA is F And GRE is H] Or [GPA is H And GRE is F] = max{min¢0.6,0.2), min(0.4,0.8)]
= 04



7
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Figure 1: (top) Fuzzy membership functions for L, F and H scores for the analytic GRE teét; (center)
fuzzy membership functions for L, F and H GPA’s; (bottom) fuzzy membership functions for P, A G
and E prospects for graduate student success.



Figure 2: Student X has an GRE score of 720. Thus, as shown in the top figure, Student X’s membership
in the set of fair GPA’s is 0.2 and high GRE scores is 0.5. Since Student X’s GPA is 3.7, his/her
membership in the set of high GPA’s is 0.6 and in very high GPA’s is 0.4. The weighted consequent
membership functions, shown on the bottom, yield 0.0 for poor, 0.2 for average, 0.6 for good and 0.4 .
for excellent. The center of mass for the sum of these two weighted curves is the defuzzified consequent.
The result is 5.33, roughly half way between average and good. :

NG
AR



In summary, the the weights of the consequents for the running example are

P = max(0,0) = 0

A = min(0.6,0.8) = 06

G = max[ min(0.6,0.2), min(0.4,08] = 04 ‘ e
E = min(0.4,0.2) = 02 e

1.2.2 Defuzzification: Finding the Crisp Consequent

The goal, however, is to have a single assessment of the performance forecast for Student X The-four.
numerical consequents can be combined into a single crisp assessment. The process of doing s&murefeued“
to as defuzzification.
With reference to the bottom membership functions in Figure 1, let up(z) be the membershx
function for P, uy(z) be for A and pg(z) be for G and pg(x) for E. Defuzzification iss e
by specifying a measure of central tendancy of the consequent membership functions when:. th&mﬁé’““ -
membership function is assigned a value of 0.0, the A membership function a value of 0.2, G a.value of
0.6 and the E membership function a value of 0.4. There are a number of ways this can be dones: ™%
By a measure of central tendancy, we mean an assessment of the ‘middle’ of the weighted memborshlp
functions. Recall the probability density function. Commonly used measures of central tendancy f6r
PDF’s include the mean, mode and rnedlan If p(z) is the probability density function, then %~

oo
mean:/ z p(z)dz,

-00

s

mode = arg max p(z)
and the median is the solution to the equation '

median oo 1
xz)dz =/ z)dr = —.
./ 2(@) media; np( ) 2

-0

In many PDF’s, the mean, mode and median are equal.
Defuzzification depends on the measure of central tendancy used. Two methods can be 1Iluatrated T

with the plot on the bottom of Figure 2. Each membership function is multlphed by its correspondmg:

weight.

1. If the mode is used, the defuzzification predicts that Student X will be an ‘average’ g:aduate
student, When the mode is used for defuzzification, the crisp consequent can be expressed?atm» ’
linguistic variable.

2. If the mean is used, the linguistic varibles of P, A, G and E must be quantified. As ﬂluitrltedﬁ '
the plot on the bottom of Figure 2, let P have a numerical value of 2, A a value of 4, G a-val

6 and assign 8 to E. The function for which the center of mass (mean) is to be computed:is;;
f(z) = 0.0up(z) +0.2up (z) + 0.4ug(z) + 0.6up(z)

The center of mass for the defuzzification, D, is

[, 2 f(z)dz
2, f(z)dz e
5.33

D



Matrix Description
Fuzzy If-Then rules, in many cases, can be expressed in matrix form. We repeat the If-Then rules of

the running example.

If GPAis H And GREis H, Then E
Or,If [GPAisF And GRE is H,

OrGPAisH And GREisF], Then G
Or,If GPAisF And GREIisF, Then A

Or,If [GPAisP :
OR GRE is P], Then P

Alternately, an exhaustive list of antecedants can be made and the corresponding consequent assigned.
For this example,

If = GPAisH And GREisH, ThenE
Or,If GPAisH And GREisF, Then G
Or,If GPAisH And GREisP, ThenP
Or,If GPAisF And GREisH, . Then G
Or,If GPAisF And GREisF, ThenA
Or,If GPAisF And GREisP, ThenP
Or,If GPAisP And GREisH, ThenP
Or,If GPAisP And GREisF, ThenP
Or,f GPAisP And GREisP, ThenP

This list of rules can, in turn, be expressed concisely in a linguistic rule matrix.

GREJ/GPAS [LF ||
L PP P
R= F Plala (1)
H PlglE

1.3 Generalization

The previous example can be generalized. Let o, be the nth object of the antecedent. Assume o,
is calibrated into K, fuzzy membership functions. For example, 0, is a GPA calibrated into K, =
3 membership functions. Let {£,x|1 < k& < K,} be linguistic descriptors of o, with corresponding
membership functions {f,x(0,)|1 < k < K,}. The fuzzy if-then rules can then be written as

If 0y is £y and 03 is £ and --- and oy, is £, and --- and oy is £y, then cis Ry, k,,...kn

where ¢ is the consequent described by the relationship R, N is the number of antecedents and £, is
a vector whose components are £,;. The R matrix for the running example is shown in Equation 1.

Let the J entries of R be calibrated using J membership functions, {u;(z)|1 < j < J}. Let the
weight of the jth membership function have weight w;. The center of mass defuzzification follows as

— S E.}]:l wj pj(z)dz o
2o Tjai wini(a)de

d (2)



Let the area of the jth membership function be denoted by
A= [ wyi)ie

The center of mass of the jth membership function is

o
Hi(z)
m; = r~t—dzx
- [—oo A]'

The defuzzification in Equation 2 can then be written as

J
g Pj=1 Widjmy
- J
Ej:l wjA;j

In many cases, all of the areas are equal. In such cases

(3)

S, wim;
_ j=1 1"
- J

j=

d

1 Wi

Consider, again, defuzzification of the weighted membership functions shown at the bottom for
Figure 2. Clearly, the areas of all membership functions are equal. The center of massses are

mp=2,mA=4,mG=6,mE=8

Thus

d = 0x2+4x06+6x04+8x02 4
- 06404402 s (4)
= 5.33

or, roughly half way between average and good.

1.4 Variations

There exist numerous variations on the operations in fuzzy inferencing. Here are a few.

o Operations other than min and max can be used for the fuzzy inferencing. Sum-product inferencing
uses multipication for the fuzzy and and addition for the fuzzy or.

¢ Defuzzification by clipping the membership function rather than weighting is commonly used. An
example is shown in Figure 3 for the student assessment example in the previous section. (Compare
to the defuzzification on the bottom of Figure 2.



Figure 3: An alternate method of defuzzification. The membership functions are clipped and the corre-
sponding center of mass evaluated.



Problems

1. Assess the forecasted performance of Student X using Yager logic with a value of w other that
infinity. Use membership weighting and center of mass for defuzzification.

2. Assess Student X using sum-product inferencing. Comment on the need, if any, to recalibrate the
consequent membership functions.

3. Assess Student X using the weighted membership functions in Figure 2 when the median is used
for defuzzification.

4, Generate a defuzzification formula of the type in Equation 3 when, as illustrated in Figure 3,
clipping is used. Assume defuzzification is performed using the center of mass.

5. What is the change in the assessment of Student X when clipping is used in center-of mass
defuzzification? | " _

6. Consider fuzzification of a number followed immediately by defuzzification using the same set of
fuzzy membership functions. If the membership functions are, say, Gaussian in shape, then the
defuzzification will be different that the original number.  What are conditions on the membership
function shapes that will result in these values being equivalent?



Fuzzy Inference Engines

Robert J. Marks II

1 Inference Engines

1.1 Introduction

The fuzzy inference engine is the foundation of most fuzzy expert systems and control systems. From a
linguistic description of cause and effect of a process, a fuzzy inference engine can be designed to emulate
the process.

1.2 Fuzzy If-Then Rules

Cause and effect statements of a process are stated through if-then rules. Consider the following pedi-
gogical example wherein the success of an undergraduate as a graduate student is inferred through
consideration of their undergraduate grade point averages (GPA’s) and their performance on the GRE
analytic test. ¢

e [F an undergraduate’s GPA is high AND their GRE score is high, THEN an undergraduate
student will make an excellent graduate student, A

¢ OR, IF
— their GPA is high AND their GRE score is fair,
— OR their GPA is fair AND their GRE score is high.
THEN an undergraduate student will make a good graduate student,

¢ OR IF their GPA is fair AND their GRE score is fair, THEN an undergraduate studeﬁt will make
an average graduate student,

e OR, OTHERWISE, the undergraduate student will make a poor graduate student,

Note, first, the operations of IF, THEN, AND and OR. Each can be interpreted in a fuzzy sense.
The fuzzy linguistic variables are written in bold. These rules can be simplified using the following
linguistic variable abbreviations.

A for average,
E for excellent
F  for (fair

G for good

H for high,

L for low,

P for poor



The If-Then Rules can then be written as

If GPAis H And GRE is H, Then E
Or,If [GPAisF And GREis H,

OrGPAisH And GREisF], Then G
Or,If GPAisF And GRE is F, Then A

Or, f [GPAisP
, OR GRE is P}, Then P
The If portions of these statements are referred to as antecedents. The Then portions are the conse- -
quents,

1.2.1 Fuzzy Numerical Interpretation of the Antecedent

The first step in building the fuzzy inference engine is quantification of the linguistic variables using fuzzy
membership functions. Consider again our example about students. Possible membership functions for
low, high and very. high are shown at the top of Figure 1. The ‘low’ membership function is denoted
by p1,.gRE(S) where S is the GRE score. Similarly, the ‘fair’ and ‘high’ membership functions are
PF-GRE(S) and p_grE(S). The midpoint of ‘“fair’ is at a score of 700. The higher the score, the
greater the membership in ‘excellent’ scores.

Similarly, three membership fuctions for low, fair and high undergraduate (3PA’s is shown in the
center of Figure 1. They are, repectively, u1,_gpa(G), #p.gpA(G) and py_gpa(G) where G is the
GPA.

Given the GPA and GRE score of a student, the definitions of each of the antecedents can be evaluated,
using these membership definitions. To illustrate, suppose the GRE score of Student X is 720. With

reference to the top of Figure 2, the following GRE membership functions are ascertained.
L]

AL-GRE(720) = 0
#P-GRE(720) = 0.8

HH-GRE(720) = 0.2
If Student X has an undergraduate GPA of 3.7, the corresponding membership functions have values of

HL-GPABBT) =0

#p-GPAB3T) = 0.6,

FH-GPA(3T) =04

Assume the minimum operation if used for the fuzzy ‘and’. (Other fuzzy intersetion and union operations
can also be used.) Then the the composite membership for the antecedent, GPA is H And GRE is H, is

HGPA is H And GRE is H = min[pg.gpaA3.7), kH.GRE(720)
= min(0.4,0.2)
0.2

The consequent for a G graduate student is a bit longer

M[GPA is F And GRE is H] Or [GPA is H And GRE is F] = max[min(0.6,0.2), min(0.4,0.8)]
= 04
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Figure 1: (top) Fuzzy membership functions for L, F and H scores for the analytic GRE test; (center)
fuzzy membership functions for L, F and H GPA’s; (bottom) fuzzy membership functions for P, A, G
and E prospects for graduate student success.



Figure 2: Student X has an GRE score of 720. Thus, as shown in the top figure, Student X’s membership
in the set of fair GPA’s is 0.2 and high GRE scores is 0.5. Since Student X’s GPA is 3.7, his/her
membership in the set of high GPA’s is 0.6 and in very high GPA’s is 0.4. The weighted consequent
membership functions, shown on the bottom, yield 0.0 for poor, 0.2 for average, 0.6 for good and 0.4
for excellent. The center of mass for the sum of these two weighted curves is the defuzzified consequent.
The result is 5.33, roughly half way between average and good.



In summary, the the weights of the consequents for the running example are

P = max(0,0) = 90

A = min(0.6,0.8) = 06
G = max[ min(0.6,0.2), min(0.4,0.8] = 0.4
E = min(0.40.2) = 02

1.2.2 Defuzzification: Finding the Crisp Consequent

The goal, however, is to have a single assessment of the performance forecast for Student X. The four
numerical consequents can be combined into a single crisp assessment. The process of doing so is referred
to as defuzzification,

With reference to the bottom membership functions in Figure 1, let pup(2) be the membership
function for P, pu4(2) be for A and pg(z) be for G and pg(z) for E. Defuzzification is performed
by specifying a measure of central tendancy of the consequent membership functions when the FtP
membership function is assigned a value of 0.0, the A membership function a value of 0.2, G a value of
0.6 and the E membership function a value of 0.4, There are a number of ways this can be done.

By a measure of ceniral tendancy, we mean an assessment of the ‘middle’ of the weighted membership
functions. Recall the probability density function. Commonly used measures of central tendancy for
PDF’s include the mean, mode and median. If p(z) is the probability density function, then

mean = / x p(z)de,
—o0
mode = arg max p(z)

and the median is the solution to the equation

/;median plz)dz = /00 p(z)dz = %

oo median

In many PDF’s, the mean, mode and median are equal.

Defuzzification depends on the measure of central tendancy used. Two methods can be illustrated
with the plot on the bottom of Figure 2. Each membership function is multiplied by its corresponding
weight.

1. If the mode is used, the defuzzification predicts that Student X will be an ‘average’ graduate
student. When the mode is used for defuzzification, the crisp consequent can be expressed as a
linguistic variable.

2. If the mean is used, the linguistic varibles of P, A, G and E must be quantified. As illustrated in
the plot on the bottom of Figure 2, let P have a numerical value of 2, A a value of 4, G a value of
6 and assign 8 to E. The function for which the center of mass (mean) is to be computed is
f(2) = 0.0up(z)+0.2up (2) +0.4uc(z) + 0.6up(z)

The center of mass for the defuzzification, D, is

2,z f(z)de
J2, f(@)de
5.33

D



Matrix Description
Fuzzy If-Then rules, in many cases, can be expressed in matrix form. We repeat the If-Then rules of
the running example.

If
Or, If

Or, If
Or, If

GPA is H
[GPA is T

And
And

OrGPAisH And

GPAis F
[GPA is P

And

GRE is H,
GRE is H,
GRE is F],
GRE is F,

OR GRE is P],

Then E

Then G
Then A

Then P

Alternately, an exhaustive list of antecedants can be made and the corresponding consequent assigned.
For this example,

If

Or, If
Or, If
Or, If
Or, If
Or, If
Or, If
Or, If
Or, If

This list of rules can, in turn, be expressed concisely in a linguistic rule matrix.

GPA is H
GPA s H
GPA s H
GPAis F
GPAis F
GPA is T
GPAis P
GPA s P
GPAis P

And GRE isH, ThenE
And GREisF, Then G
And GREisP, ThenP
And GREisH, ThenG
And GREisF, Then A
And GREisP, ThenP
And GREisH, ThenP
And GREisF, ThenP
And GREis P, ThenP

1.3 Generalization

GREJ/GPA= L|F |H
L P[P |P
F PlA|G
H P|{G|E

(1)

The previous example can be generalized. Let o,, be the nth object of the antecedent. Assume oy,
is calibrated into K, fuzzy membership functions. For example, 0, is a GPA calibrated into K} =
3 membership functions. Let {£x]1 < k < K,} be linguistic descriptors of o, with corresponding

membership functions {gnx(on)|l < k < K,}. The fuzzy if-then rules can then be written as

If 0y is £1 and 03 is £, and --- and oy, is £, and - and on is £y, then cis Ry, k,,..Ky

where ¢ is the consequent described by the relationship R, N is the number of antecedents and Z, is

a vector whose components are £,;. The R matrix for the running example is shown in Equation 1.

Let the J entries of R be calibrated using J membership functions, {p;(z)|1 < j < J}. Let the

weight of the jth membership function have weight w;. The center of mass defuzzification follows as

_ e > Wit (2)de

d

(2)



Let the area of the jth membership function be denoted by

[=e]
4j= / pj(z)dz
-0
The center of mass of the jth membership function is
oo X .
m; = / wi’—(m—)dx
—o 5

The defuzzification in Equation 2 can then be written as

J

7
Ej:l wjAj
In many cases, all of the areas are equal. In such cases
J ’ .
d= Ej:l Wjm;

J
Zj:l l.U]

Consider, again, defuzzification of the weighted membership functions shown at the bottom for
Figure 2. Clearly, the areas of all membership functions are equal. The center of massses are

mp=2,my =4,mg=6,mg =28

Thus

d = O0x24+4x06+6x044+8x0.2 (4)
B 06+0.440.2
= 5.33

or, roughly half way between average and good.

1.4 Variations

There exist numerous variations on the operations in fuzzy inferencing. Here are a few.

o Operations other than min and max can be used for the fuzzy inferencing. Sum-product inferencing
uses multipication for the fuzzy and and addition for the fuzzy or.

e Defuzzification by clipping the membership function rather than weighting is commonly used. An
example is shown in Figure 3 for the student assessment example in the previous section. (Compare
to the defuzzification on the bottom of Figure 2.



Figure 3: An alternate method of defuzzification. The membership functions are clipped and the corre-
sponding center of mass evaluated.



Problems

L.

Assess the forecasted performance of Student X using Yager logic with a value of w other that
infinity. Use membership weighting and center of mass for defuzzification.

. Assess Student X using sum-product inferencing. Comment on the need, if any, to recalibrate the

consequent membership functions.

. Assess Student X using the weighted membership functions in Figure 2 when the median is used

for defuzzification.

Generate a defuzzification formula of the type in Equation 3 when, as illustrated in Figure 3,
clipping is used. Assume defuzzification is performed using the center of mass.

. What is the change in the assessment of Student X when clipping is used in center of mass

defuzzification?

. Consider fuzzification of a number followed immediately by defuzzification using the same set of

fuzzy membership functions. If the membership functions are, say, Gaussian in shape, then the
defuzzification will be different that the original number. YWhat are conditions on the membership
function shapes that will result in these values being equivalent?
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NEURAL NETWORKS
OPTIMIZATION

Fuzzy Parameter
Adaptation in
Optimization:

Some Neural Net Training
Examples

Payman Arabshahi, University of Alabama in Huntsville
Jai J. Choi, Boeing Computer Services

Robert J. Marks II, University of Washington

Thomas P. Caudell, University of New Mexico

ANY NONLINEAR OPTIMIZATION ALGORITHMS, INCLUDING THOSE

used to train various types of artificial neural networks, strive to opti-
mize some performance measure through judicious selection of one or more
parameters. For instance, in the backpropagation-trained multilayer per-
ceptron,! the performance measure is convergence speed. This speed is af-
fected by the choice of learning and momentum parameters. Similarly, in
the Adaptive Resonance Theory (ART 1) network,” the choice of a vigilance
parameter affects the number of classes into which the data are classified.
The values of these parameters can be adapted during training to improve
the performance measure(s) of the neural network. Table 1 summarizes the
performance measures and parameters associated with several neural nct ar-

- chitectures. The theme introduction on pp. 36-42 provides some back-

ground on these various methods.

Training parameters are typically chosen and adapted by a “neural smith,”
using human judgment, experience, and heuristic rules. For cxample, a
smooth error surface in the backpropagation training of a layered perceptron
suggests use of a long step, whereas a steep surface suggests smaller steps.
Note that this description is fuzzy: the terms “smooth,” “long,” “steep,” and
“smaller” are each fuzzy linguistic variables.

Rather than choosing and optimizing these parameters manually, how-
ever, we take advantage of the fact that the linguistic variables used in human
judgment can in many cases be quantified into a rule-based fuzzy inference
engine. This fuzzy controller then replaces the neural smith. This method-
ology for choosing training parameters can be applied to other neural net-
works, including Kohonen’s self-organizing maps’ and laycred perceptrons
trained by other methods, such as random search.* But beyond neural nets,
this rescarch has led us to adopt the principles of fuzzy logic in a way that can
potentially be broadly applied to a wide variety of algorithms used in adap-
tation and optimization.

1070-9924/96/35.00 © 1996 |EEE 57
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Alpha Cuts

B o-cuts are used to make a fuzzy set crisp (8 9)
EXTRA CRISPY" :

® o & B-cuts can be used for tri-valent logic.




Fuzzy Convex Combinations

# Crisp Convex Combinations 10

# Fuzzy Convex Combination of two fuzzy
sets 11

® Properties

® Existence 12 OUOHNUTS®
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Fuzzy Inference Example

# Assume that we need to evaluate student
applicants based on their GPA and GRE scores.

# For simplicity, let us have three categories for
each score [High (H), Medium (M), and Low(L)]

®# Let us assume that the decision should be
Excellent (E), Very Good (VG), Good (G), Fair (F)
or Poor (P)

# An expert will associate the decisions to the GPA
and GRE score. They are then Tabulated.



Fuzzy Inierence Example

H# Fuzzy if-then Rules
If the GRE is | and the GPA is

then ® udent w ‘
If the i | and the GPA is

Fuzzy Logic

Antecedent  [Consedquent |
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® Fuzzifier converts a crisp input into a
vector of fuzzy membership values.

# The membership functions

m reflects the designer's knowledge

m provides smooth transition between fuzzy
sets

m are simple to calculate

# Typical shapes of the membership function
are Gaussian, trapezoidal and triangular.
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Fuzzification

" Transform the crisp antecedents into
a vector of fuzzy membership values.

" Assume a student with GRE=900 and
GPA=3.6. Examining the
membership function gives

MRE——ILl‘ =0.8, MI\I—O_ M }

MGPA: {“L: 0, “M: Uity HH: 0'4}









The student is
GOOD if

(the GRE is HIGH
- and the GPA is
- MEDIUM)
O OR
____ _(the GRE is
. MEDIUM and the
- GPA is MEDIUM)
I The consequent
I GOOD has a
WS membership of
max(0.6,0.2)=0.6
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# An Alternate Approach: Fuzzy set
with the largest membership value is
selected.

®# Fuzzy decision:
{B, F, G,VG, E} ={0.2, 0.4, 0.6, 0.0, 0.0}
# Final Decision (FD) = Fair Student

# If two decisions have same
membership max, use the average of
the two.
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Rule Aggregation

LN MN SN ZE SP MP LP
ATl L N LN e. SN f SN
[N LN LN LN
—~ 9
MN LN LN LN d. SN 917 (/)10
- LN LN c SN 91 7E
’SN 0.3
—~| LN bSN ZE MP
/.F
0.4
QP a. SN Zk ZE MP
0.1
M PJ 7E MP

Consequent is or SN ifgor b or cordor f.




Rule Aggregation

Consequent isor SN ifaorborcordorf.
Consequent Membership = max(a,b.c.d,e.f) = 0.5
Use General Mean Aggregation:

g 11/

i ] &
agg ,(¥)=|—> x¢
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nly Used Variations

Sum-Product Inferencing

Instead of min(x,y) for fuzzy AND...

Use = x ey

Instead of max(x,y) for fuzzy OR...

Use = min(1, x + y)
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Fuzzy Relations

®# Definition 19
# Composition 20 21 22 2-
® Properties 24 I
® Sagittal Relations 25

® Sagittal Composition 26
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Fuzzy Convex Sets

- #® Crisp Convex Sets 13
# Fuzzy Convex Set Definition 13
# An Alternate Definition 14
® Example 15
® Properties 16



Most of the concepts we
use in daily life, such as
large, small, heavy and
light, are vague or
“fuzzy.” But machines
must normally be provided
with precise definitions.
Fuzzy control is changing
this situation, and opening
up the use of vague data.
This makes it possible in
many cases to build
controls that are more
robust, cheaper and
require less energy to
operate. Indeed, fuzzy
logicis the only possible
answer to a number of
challenging control
problems.
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Fuzzy Control Systems:
Clear Advantages

Michael Reinfrank

Since 1987 the Japanese city of
Sendai has had a driverless subway
system that is automatically oper-
ated by a so-called fuzzy control-
ler. Whereas in Europe the term
“fuzzy” has long aroused negative
associations, the Japanese are in-
creasingly embracing the concept
and applying it. For instance, fuzzy
logic can decide on the optimum
time for a car to shift gears, can
manage the amount of suction
needed by a vacuum cleaner, and
can even limit subject movement in
video cameras. But now the fuzzy
wave has also reached Europe.

Fuzzy Control

What is a fuzzy controller? As
far as the operation of a subway
system is concerned, the problem
can be simplified as follows: the
positions of accelerator lever and
brake lever must be determined on
the basis of available measured
data (e.g. current speed, position)
and desired targets (e.g. required
speed curve). Basically, there are
three possible ways of achieving
this (Fig. 1). The most widespread
method is that of manual opera-
tion, i.e. the translation of mea-
sured data and target requirements
into acceleration and braking ac-
tions by the driver. If, however, we
wish to automate this operation
(one possible way of increasing the
frequency of trains in local public

Dr. Michael Reinfrank,
Siemens AG,

Corporate Research and
Development,

Munich, Germany

transport), the classical approach is
based on the following principle:
mathematical models are used to
provide as accurate a description as
possible of the technical process
controlled by the driver, and this
model is then used as the basis for
algorithmic methods, such as so-
called PID controllers. Conversely,
with fuzzy control, it is not the
technical system that is modeled,
but the manner in which a human
process controller acts, i.e. how
the driver drives the train.

But how is a subway train driven?
Interviews with drivers and techni-
cians result in the formulation of
rules such as the following: If the
train is a short distance from the
station and is traveling at average
speed, then an average braking
force is required.

A central problem in this respect
is the term “average speed,” which
must be described in formal terms
so that such a rule can be processed
in a computer. The first possible
solution to this problem is shown in
Figure 2: the normal speed range
of a subway train is broken down
into sections in each of which a
clear definition is made: yes, 40
km/h is an average speed or no, 39
km/hisnot an average speed. Sucha
solution entails two problems. No
subway driver or technician is able
with certainty to draw a precise di-
viding line between what is and
what is not an average speed. Even
if such unambiguously defined
limits were available, controls
based on these would result in a
jerky ride at the points of transition
between one speed range and the

next, since the above rule, for
example, is not applied at all at
39 km/h but is wholly enforced at
40 km/h.

This is where fuzzy logic and fuz-
zy control enter the picture. Such
systems make it possible to pro-
duce a gradual transition in speed,
as shown in Figure 2. There are
speed ranges in which the question
“Is this an average speed?” can be
clearly answered with yes or no;
the transitions between ranges,
however, are fluid or fuzzy. A
speed of 40 km/h corresponds only
to a certain extent to a subway
driver’s concept of an average
speed — and only to that extent will
a rule responding to such a speed
be satisfied and applied. It is im-
portant to note that fuzzy control
does not necessarily have anything
to do with fuzzy data, but with fuz-
zy control concepts used in the pro-
cessing of data — of both the fuzzy
and non-fuzzy kind.

Typically, a tuzzy control con-
sists of 20 to 100 such rules that are
run through in a loop. Measured
data and reference variables are in-
putted into the control at defined
intervals; the output from the con-
trol comprises control actions or
manipulated variables derived us-
ing these rules. Consequently, a
fuzzy controller is a real-time ex-
pert system used in process auto-
mation that employs fuzzy logic in
order to represent qualitative vari-
ables. Both the gradual decision-
making functions and the rules and
their execution are coupled to very
elementary operations, which pro-
vides the basis for specific software
and hardware support (fuzzy
chips), and thus permits efficient,
real-time-capable solutions. Con-
sidering fuzzy controllers as real-
time expert systems, their relation
to neuronal networks is of particu-
lar interest. Both systems are
based on the same principle: they
attempt to model human thought
processes and, in particular, the
soft decisions that occur in such



SR: What was the process that led
up to the decision to invest in a light
rail system here in San Diego?

Senator Mills: It was a very sim-
ple process. As the president of
the Senate of California, I carried
Senate Bill 101, which created the
San Diego Metropolitan Transit
Development Board - MIDB -,
gave it the responsibility of build-
ing a rail system, and the money to
implement that decision. There
wasn’t any general public, govern-
ment, or business support for it at
the time. But when the money was
provided, it was spent, and that
created the south leg of our transit
system. Today, there’s general
support for the system.

SR: Once the decision had been
approved, how did the San Diego
MTDB go about awarding contracts
for the rolling stock, and why did it
decide on Duewag?

Senator Mills: One of the provi-
sions of Senate Bill 101 was that
only service-proven equipment
could be purchased for the city’s
public transportation. That provi-
sion was designed to avoid the kind
of costly experimentation that has
taken place in some other Ameri-
can cities. With that in mind, the
decision to buy Duewag equipment
in particular stemmed from a field
trip by MIDB members to Edmon-
ton and Frankfurt. In those cities
the Board members saw U2 cars in
operation. They were favorably
impressed by the appearance,
characteristics, and maintenance
records of the vehicles, as well as
the statements of the operators.
The result was that a decision was
made to buy U2 cars.

SR: The San Diego Light Rail
System is considered to be the most
successful in the United States.
What makes it superior to other sys-
tems?

Senator Mills: It is the most suc-
cessful of the new light rail systems
in the United States for two
reasons. Number one, from a fi-
nancial point of view, it has per-

The San Diego
Light Rail System:
Facts & Figures

Overview: Two lines, 32 miles of
track, 71 Siemens Duewag U2
light rail vehicles (with 75 more on
order) powered by 600-V DC
overhead lines, 33 stations, over
4000 free parking places

at 16 park-and-ride lots. Total
personnel: 264.

Operating performance. 50,000
passengers per weekday, over 15
million passengers carried in 1990,
93.15 percent farebox recovery
rate, 98.9 percent on time.

Fares: Self-service system,
random inspection by roving fare
inspectors, one percent evasion
rate. Fares range from 50 cents to
$2.00 one way, depending on
distance; multi-ride, day-tripper,
and monthly passes available.

Organization. The city's light rail
system is run by San Diego
Trolley, Inc (SDTI), which is a
wholly owned subsidiary of the
Metropolitan Transit Development
Board (MTDB). The Board's area
of jurisdiction covers
approximately 570 square miles,
and a population of 1.7 million.

E |

formed better than any other sys-
tem. It has covered a larger per-
centage of operating costs out of
the farebox than any other pas-
senger railway in the United
States. San Diego’s system also
costs less per passenger mile to run
than any other urban passenger
railway in the United States.

The second point is that the sys-
tem has generated more patronage
than any other new system by a
wide margin. We are now carrying
50,000 people per day on week-
days, and the figure is steadily in-
creasing. Since January 1983 we
have never had a month of opera-
tions in which we didn’t carry at
least as many people as in the same
month the year before. On the
south line we are now carrying

about three times as many people
as when the line opened.

SR: What accounts for this? Has
the MTDB promted the system in the
media?

Senator Mills: There has been
virtually no promotional effort.
We once bought a billboard.
We've only paid for advertising
twice. That’s it. Other than that we
do a good job of public relations
and public education. But for the
most part ridership grows as a re-
sult of favorable reports made by
patrons.

SR: You said the system costs less
to operate than any other system in
the United States. What accounts
for that?

Senator Mills: I should have
added that the system cost less to
build than any other. You see,
there was a concerted effort to
keep costs down. The stations were
built inexpensively. The repair
facilities are inexpensive, prefabri-
cated buildings. The signalling sys-
tem is traditional. It’s a simpler
system than many others. This
keeps capital costs and operating
costs relatively low; the latter is
particularly important because per-
sonnel account for 50 percent of
our expenses.

SR: Major sections of the line
network were created by rebuilding
freight train track, and today the
city’s rail system is being used by
both light rail vehicles and freight
trains. What economic advantages
has the city derived from this dual
use strategy?

Senator Mills: This was an impor-
tant innovation. It was a very low-
cost way of acquiring right-of-way
for the passenger railway, while at
the same time maintaining rail con-
nections for many local industries.
Most American cities have rail
lines running through them, but
surprisingly, none have taken
advantage of them as San Diego
has.

SR: Your rolling stock is remark-
ably clean and free of graffiti. What

measures has the MIDB taken to
ensure such a high level of mainte-
nance?

Senator Mills: Our policy is to
take any graffiti off the cars as soon
as it’s discovered. When a car com-
pletes a run it’s checked. If graffiti
is found, the car is taken out of ser-
vice at that point; not an hour la-
ter, and not at the end of the day.
The result is that people don’t put
graffiti on. People who do that
kind of thing like to see their work.
But if they never see it again they
don’t have the motivation to do it
in the first place. The same mainte-
nance strategy is applied to our sta-
tions. And the reasoning behind
the strategy is simple: graffiti has
an adverse effect on ridership.

SR: Looking ahead, how does
San Diego intend to further expand
and improve its light rail network,
and is there a general policy or
philosophy with respect to limiting
the use of private vehicles?

Senator Mills: The money to
double the size of our light rail sys-
tem is already available. We re-
cently ordered 75 light rail vehicles
from Duewag corporation with a
value of $120 million to serve the
first of our planned extensions. We
will be expanding the system to the
north, and building another line to
the east. We expect that the system
will grow at a faster rate over the
next ten years than it has over the
last ten. And I imagine we will find
funding to continue expanding the
system thereafter.

At present there is no general
policy or philosophy with respect
to limiting the use of private vehi-
cles. That is in the works, however,
— the air pollution control board,
which was created by state law, is
considering that and is expected to
produce policies that will limit the
use of private vehicles. In particu-
lar it will place penalties on em-
ployers who fail to reduce the
number of employees who come to
work in private vehicles. )

Siemens Review 6/91 2 7



)

| power

@?’iﬁi,’lynp

|
|

J g oo

r

| Fuzzy-Control

{if d=small

| v=medium-sized
‘then b= negative

medium-sized

Truth Function (average speed)

Tio

(full
agree-
ment)

0

(no 20 30
agreement)

processes. In the case of neuronal
networks, this is done at the level
of so-called damp hardware, i.c.
neuronal computing structures are
imitated. Fuzzy control operates at
a somewhat more abstract cogni-
tive level.

A Vast Range of Applications

Assessments of the potential of
fuzzy control vary between eu-
phoria and extreme reservation.

ler assessment is in keeping
wiul the state of the art. To be
sure, many automation problems
can be satisfactorily solved using
conventional techniques and, apart

... Specified
data

|

PID controller
m-dv/dt=F(v)-G(v)

: :
I F‘
| i
“ Fuzzy ! . Sharp
concept | concept
f
i l
|
40 50 60 70 - 80
Speed —>
Fig. 1
There are three ways of

from prestige or marketing slo-
gans, provide no technological ar-
guments in favor of the use of fuzzy
control. There are, however, a
wide range of problems where, al-
though a solution can be achieved
by conventional methods, fuzzy
logic could provide real advan-
tages. This occurs typically in cases
where there is no accurate or sim-
ple mathematical model of the sys-
tem in question, because it is pre-
cisely such a model that forms the
basis for conventional solutions.
Fuzzy control, however, does not
need such a model, but simulates
the strategy of the person control-

controlling a train:
manually, with
conventional automation,
and with fuzzy control

Fig.2

Average speed as a clearly
defined concept and as
represented in fuzzy control
(vellow, with fluid
transitions)

ling a process. Thus, in such cases,
this is the only method that makes
it possible to arrive at satisfactory
solutions. Typical applications are
industrial processes such as cement

production, sewage treatment, or
general environmental engineer-
ing, where efficient models are fre-
quently not available. In the
medium and long term, these will
definitely become important fields
of application for fuzzy control.

On a case-by-case basis, how-
ever, fuzzy control can also be seen
as being in direct competition with
conventional solutions, as in the
previously described control sys-
tem for subway trains. This is an
area where fuzzy control frequent-
ly provides advantages as regards
the quality of the solution or as re-
gards development or implementa-
tion costs. For instance, fuzzy con-
trol enables:

e trains to travel in a smooth and
energy-saving manner;

e washing machines to make do
with 4-bit processors, whereas con-
ventional controls require 8-bit
Processors;

e air conditioning systems to be
built with very great flexibility
in comparatively short periods,
whereas conventional  controls
have to be extensively adapted to
varying conditions.

A review conducted in the
Spring of 1989 revealed over 120
successful industrial applications of
fuzzy control, with the overwhelm-
ing majority being in Japan. To
date, accurate, comprehensive
studies of fuzzy control’s market
potential have either not been
made or are not publicly available.
Two figures, however, provide an
indication of how fuzzy control is
rated by Japanese companies: for
the mid-"90s Omron expects to
achieve over $1 billion worth of
sales annually with fuzzy-control
products and, in the next few
years, Panasonic is aiming for the
“fuzzification” of some 200 prod-
ucts.

Needed: Parameters for Fuzzy
Applications

In spite of the apparent success
of fuzzy control systems, the tech-

Siemens Review 6/91 2 9



nology has shortcomings that still
represent an obstacle to its full ex-
ploitation. For example, although
there is a great deal of experience
as regards those applications in
which fuzzy control can be put to
good use, there is still no estab-
lished system that makes it possi-
ble, on the basis of problem-
specific characteristics, to decide
whether, in which version, and
with what benefits fuzzy control
should be employed.

The development of an all-em-
bracing theory of fuzzy control
and, in particular, of a resultant,
systematic method of development
is still a long way from completion.
This is also expressed in the fact
that software-development envi-
ronments for the implementa-
tion of fuzzy-control applications
scarcely exceed simple, graphics-
oriented rule editors and compil-
ers. While there are specific soft-
ware- or hardware-supported rou-
tine environments for fuzzy-con-
trol applications providing satisfac-
tory performance and an improv-
ing price/performance ratio, the
economical application of fuzzy
control in a broader range of appli-
cations depends on the further de-
velopment of systematic design
techniques and efficient develop-
ment tools.

In addition, a shortage of per-
sonnel trained in this technology is
one of the principal obstacles to
the broad-based use of fuzzy con-
trol in Germany. So far, the sub-
ject has hardly been touched in
German universities. There are
only very few experts, and the
available literature provides en-
gineers and information scientists
with very little assistance as far as
the design and implementation of
fuzzy-control applications is con-
cerned. Thus, overall, there are
three areas in which progress is still
required:

e systematic design and imple-
mentation methods,
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e powerful software tools, and
e improved training.

Worldwide R&D Activities

Around the world, but particu-
larly in Japan, intense work is be-
ing conducted on overcoming the
above-outlined shortcomings. One
of the centers of Japanese activity
is the LIFE Institute (Laboratory
for International Fuzzy Engineer-
ing Research) in Yokohama. Mod-
eled after the Fifth Generation In-
stitute, the LIFE Institute not only
enjoys an annual budget of $10 mil-
lion but also has many industrial
member companies, including Ca-

now attempting to gain a foothold
in the European market with
fuzzy-control products.

In addition to Japan, India and
China are very actively engaged in
fuzzy research, as is demonstrated
by their representation in the In-
ternational Fuzzy Set Association.
While there are fewer than 500
members each for Europe and the
U.S., China and India each have
2000 members.

In the U.S., the aerospace indus-
try — chiefly Boeing and NASA -
has shown the greatest interest in
the field of fuzzy control. Current-
ly, the most important manufac-

however, it has rarely been trans-
lated into applications. A notable
exception to this is described in the
adjoining article. However, many
companies are now beginning to
examine fuzzy control - in most
cases with small-scale evaluation
projects.

Fuzzy Control at Siemens

Fuzzy control can be used ad-
vantageously in many areas of

Fig.3
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non, Fuji Heavy, Hitachi, Mat-
sushita Electric, Mitsubishi Elec-
tric, IBM Japan, and Thomson Ja-
pan. In addition, several univer-
sities as well as companies such as
Omron (according to its own infor-
mation, this company has some 50
employees working on fuzzy con-
trol) are pursuing their own, exten-
sive activities in this area. While
Japanese companies have so far
largely restricted themselves to
their domestic market, they are

turer of fuzzy-control hardware
and software outside Japan is To-
gai Infralogic, Inc., a software
company whose main products are
a development system for efficient
fuzzy-control applications (based
on standard microprocessors), as
well as special fuzzy accelerator
boards.

In Germany, as in the rest of
Europe, fuzzy control has so far
been pursued predominantly as a
theoretical discipline. To date,

automation in which Siemens is in-
volved. These include knowledge-
based systems, control engineer-
ing, electronic circuits, and corre-
sponding fields of application.

The foundations for work in
these and other areas were laid by
Task Force Fuzzy, which was es-
tablished in January 199
Siemens’ Central Research aud
Development Department (Fig. 3).
Task Force Fuzzy’s tenmembers are
pursuing two essential objectives:




first, in collaboration with the com-
pany’s product divisions, the Task
Force is pursuing pilot applications
capable of rapid development. Sec-
ondly, in-house improvements to
methods and tools for fuzzy control
are being examined. These are
aimed at the systematic support of
the entire life cycle of a fuzzy-con-
trol application from initial design
through acquisition of the knowl-
edge base to startup and optimiza-
tion.

Task Force Fuzzy is working
with application experts inside the
company, as well as with numerous
external partners. Projects have
been designed in such a way that
pilot applications are implemented
by teams, with the Task Force pro-
viding the expertise in fuzzy con-
trol and the respective product di-

n supplying the specific appli-
LwalON EXPpertise.

Other internal partners include
hardware and sensor technology
experts from the central microelec-
tronics-development ~ department
and from the semiconductors prod-
uct division. The resulting syner-
gies are expected to lead to deci-
sive competitive advantages.

Outside the company, Task
Force Fuzzy is working with man-
ufacturers of fuzzy-control hard-
ware and software. For example,
joint application projects are
underway with, among others, To-
gai Infralogic. On the research
side, there is close cooperation
with the Institute for Corporate
Research at RWTH (a German
technical university) as well as with
other German and international
research institutes. Thus, in overall
terms, Task Force Fuzzy has been
established as a Corporate Center
of Competence. The Task Force
r=~rates as the interface between

nal partners and Siemens’
product divisions and thus, in addi-
tion to its own personnel, supports
more extensive R&D activities re-
lating to fuzzy control. ®

Developing Fuzzy
Control Technology
in Europe

Hans-Jiirgen Zimmermann

In 1965 the first publication on
fuzzy sets appeared in the U.S.,
and in the mid-"70s the first fuzzy
controller was introduced in
Europe. Yet even by the end of the
"70s, Japan displayed no apparent
interest in fuzzy control technolo-
gy. Japan’s massive advance in a
broad range of fuzzy products thus
requires a 4-point explanation:

e The seeds of this technology
were randomly dispersed through-
out the world. In the U.S. they
took root in information science,
an attractive, but not very applica-
tion-friendly area. Similarly, in
Europe they took root above all in
the field of operations research.
But in Japan, control engineers
seized on the new approach and
quickly used it to solve concrete
problems.

e The close relationships between
universities and industry in Japan
promote the rapid conversion of
ideas into products: university
laboratories are financed to a large
extent by industry. Thus knowl-
edge gained in the course of R&D
activities is quickly brought to
market.

e The strategic thinking of the
Japanese, which is geared to long-
term goals, creates a solid basis for
the rapid implementation of in-
novative ideas.

o The technology-friendly mental-
ity of Japanese consumers has giv-

Prof. Hans-Jirgen Zimmermann,
Head of the Institute for
Operations Research at RWTH
Aachen, Germany

| Fuzzy
| Control 1

Fuzzy
parameters |

' De-fuzzi-
fication

en a boost to fuzzy fever in Japan.
The fact that similar interest has
developed in Germany as well, at
least among potential manufactur-
ers, is due in large measure to the
media.

The Potential for Fuzzy Products

The U.S. and Europe are clearly
out in front as regards scientific
know-how in this field. This is not
surprising in view of the heavy en-
gineering bias of the Japanese.

J Fuzzi-
 fication

Fig. 1

The basic structure

of expert and

fuzzy control systems

is very similar:

the knowledge base and
inference engine

form the core; inboth
cases non-numerical data
must be processed
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Possible Hardware Platforms for Fuzzy Control
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Process
control
computers
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hardware
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Analog
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P

Conversely, practical experience -
especially in fuzzy control - is still
very thin in Europe, where there is
a distinct shortage of experts.

The potential fields of applica-
tion for fuzzy control lie predomi-
nantly in highly complex tasks in-
volving large volumes of data.
Hardware, software, and brain-
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ware, as well as scientific and prac-
tical know-how contribute signifi-
cantly to market opportunities for
fuzzy products. The range of avail-
able hardware extends from the
conventional ~digital computer
through parallel computers, mi-
crocontrollers and analog or digital

fuzzy processors to application-

Fig. 2

Fuzzy applications

extend from PCs

via parallel processors,
microcontrollers, and
special fuzzy processors to
application-specific fuzzy
chips (FASICs)

Fig.3

Entry of the knowledge
base for this fuzzy car took
only two hours

specific fuzzy chips (FASICs).
There is already a wide array of
software tools for implementing
fuzzy control systems; many, how-
ever, have not progressed beyond
the pilot-version stage. Brainware
~ the generic term for methods,
theories, and techniques — has so
far been based on a relatively sim-
ple foundation, some of which was
laid as early as the "60s.

Can Europe Challenge Japan?

Europe’s chances of challenging
Japan can be characterized by the
following eight points:

e Japan has a three- to four-year
lead as regards practical applica-
tions.

e Japanese experience is concen-
trated on control-related applica-
tions; as regards fuzzy data ana'

or the use of expert syste.
Europe is in front.

e The scientific base is broader
and deeper in Europe.

e Europe and the USA are more
heavily software-oriented.

e Japan is entering the world mar-
ket with fuzzified products and fuz-
zy hardware; the USA is concen-
trating more on software.

e Europe should promote fuzzy
products and solutions instead of
fuzzy techniques.

e The existence of a valuable pool
of German ideas is confirmed by
the large number of inquiries to
RWTH Aachen concerning the pos-
sibility of making fuzzy products.

e The German fuzzy-control mar-
kets and the world markets are cur-
rently being divided up; the Japa-
nese market is already firmly in
Japanese hands. Strong American
competition can be expected as of
1992.

To sum up: At present, E
peans still have a perfectly good
opportunity to challenge Japan.
But there is very little time left to
seize that opportunity. °



